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LIST OF SYMBOLS

= bumper material speed of sound

= projectile diameter

a_ ffiexponent for objective function term i and variable j

at_ = exponent for term i, variable j, in constraint 1

A = spacecraft space debris area

A t = acceleration factor of primal penalty function for constraint 1

B = spacecraft orientation factor

c_ = coefficient for objective function term i

ca = coefficient for term i in constraint 1

c_, = coefficient for posyseparable term i

C

D

DOD = geometric programming degree of difficulty

f ffi non-normalized impact velocity distribution

ffinormalized impact velocity distribution

= space debris flux

ffifraction of hyperspace for random search

fficonstraint 1

ffispacecraft altitude

ffispacecraft inclination

ffinumber of independent variables

= right hand side of primal constraint 1

- wall material constant

ffiprojectile mass
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= number of random search points

= number of terms in constraint 1

= number of terms in objective function

= positive integer value corresponding to variable j

= cumulative space debris flux

= number of walls penetrated (normal impact)

= total meteoroid flux

= number of constraints

ffispace debris growth rate

= required confidence for random search

= spacecraft probability of no penetration

= number of discrete variables

= discrete availability factor for variable j

= solar flux

- bumper/wall separation

w bumper thickness

w wall thickness

= mission duration

=projectile impact velocity

= maximum space debris impact velocity

= structure mass per unit area or weight

= acceleration factor of primal penalty function for discrete constraint 1

= dual variable corresponding to objective function term i

= dual variable corresponding to term j in constraint 1
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= binary factor of primal penalty function for constraint I

= fhst dual variable for discrete constraint of variable j

= second dual variable for discrete constraint of variable j

= binary factor of primal penalty function for discrete constraint l

= convergence parameter for penalty function

= initial exploratory step size for Hooke and Jeeves

= f'mal exploratory step size for Hooke and leeves

ffiimpact angle from surface normal

= dual objective function variable in constraint I

= dual objective function

= primal penalty function

= bumper density

= wall density

= projectile mass density

= spacecraft inclination factor

= nearest integer of quantity in brackets

A 0 subscript denotes optimal value for a primal variable.

A * superscript denotes optimal value for a dual variable.
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1 INTRODUCTION

1.1 Problem Statement "

Spacecraft designers have been concerned since the 1960's about the effects of meteoroid

impacts on mission safety. Recent concerns have extended to the space debris environment,

which typically displays more massive particles than the meteoroid environment for the same

risk level. Additionally, the higher exposure area-time product of future space missions (e.g.,

Space Station) poses a more critical design problem than current short term missions. Finally,

the inherent uncertainties in projectile mass, velocity, density, shape, and impact angle make

the traditional deterministic design approach impractical.

The engineering solution to this design problem has generally been to erect a bumper or

shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. This

passive measure has resulted in significant structural weight savings relative to a single wall

concept with the same protective capability. The problem, then, is how to efficiently design

these protective structures so that the bumper disrupts the projectile without posing a lethality

problem to the wall protecting the crew and equipment.

Spacecraft designers have a number of tools at their disposal to aid in the design process.

These include hypervelocity impact testing, analytic impact predictors, and,hydrodynamic

codes. Perhaps the most widely accepted 0f _ese tools is impact testing, whichhas the advmtage

of providing actual spacecraft design verification. On the other hand, maximum test velocities

are currently limited (8 kin/see) relative to maximum space debris (about 15 km/sec) and

meteoroid (about 72 km/sec) velocities. Also, extensive testing is required to develop statis-

tically significant trends for the large number of parameters associated with hypervelocity

An Employee-Owned Company
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impact. Hydrodynami c codeanalysis can overcome the velocity limitation problem. However,

this method is very computer (and time) intensive, and there is a fair amount of controversy

involved in the selection of appropriate codes and code-specific parameters.

Analytic impact predictors generally provide the best quick-look estimate of design

tradeoffs. Their use is constrained by the limitations of the testing from which they are

experimentally derived, the assumptions used in their theoretical derivation, or the regression

analysis used in their statistical formation. However, analytic predictors may provide infor-

marion that is clearer than that obtained from the examination of experimental results.

The most complete way to determine the characteristics of an analytic impact predictor

is through (nonlinear) optimization of the protective structures design problem formulated with

the predictor of interest. Optimization techniques provide analytic or numerical soh_fions
x _

depending on the nature of the predictor, the problem formulation, and the technique used.

1.2 Contract Purp0_= ....

The purpose of this contract is to provide Space Station FREEDOM protective structures

design insight through the coupling of design/material requirements, hypervelocity impact

phenomenology, meteoroid and space debris environment sensitivities, optimization techniques
= ..... _ -

and operadons research strategies, and mission scenarios. Major findings from contract

inception to the beginning of this study are detailed in References 100-105 _d _e_ shown below:
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1.3 Study Goals ::

The goals of this study are to:

i : : i __i:'::":tR_!:_:t_x_ii_?:_ __i_i_!i!ii-:_i::':':!i:i!i! x _!_ii!iti!iiiii..'.'iiiiii?.'iiiiii!i_i!_!ii_!iii_i_ii:i_i_i!'iiiii..'.'_i!iii:i:iii-_iii!iiii'!i_i:_i-!i!i!i!_iii_iiiiiiiii_'i:_::'!i_i!i_i!_iiiiii_iiiiiii:%ii_:ii[!ii_!i!::_i.::i_i:i_i:_i!i!i_ !i!i!i_:_!'.>ii_ii!_i!_!'!i!ii i i i i:ii i i_i_'::i ! _! __! ! ! __ _:_i__i" __ii_iiiiiii iiiiiiiiiii

iif:/_!s_i_i__i____ii_i_!iiiiiiiii!iii_ii_!iii!_i_!i_i_i!i_i_ii_iiiiiiiiii_i_iiiiii_iiiiiiiiiiiiiii_iiiii!t!!!i_!_!i_i_i!_i_!_i_i!iii_ii_ii_ii!i_i!_i!i_i_i_i_tt:_i_ii_ii_

ii_iiiiiii_)__::i_J:_ii_ _:!_:i_ii_:_i!__ii__ :__ _iiiiiii_iiiiiiiiiiiiiii!iiiiiiiiiii!i!ii!!!ii!!itlili!i!i!iiiiiiitlili!iiiili!iiiitiiiiiiili!!iiii!!iliiii
The period of performance for this effort is 2-28-90 through 6-30-91. : :

Additional go_ils n0t included in the Scope-of Work ar_." ::_:::_ :_ii:-: -_i??

1.4 Study Approach

The methodology presentedin this study iS sufficiendy general for applicaffon to various

spacecraft configurations and impact environments. The baseline scenario investigated is for

the Space Station C_re Module Configuration and space debris environment with the following

_ specifications:_i/ace°debris grow_ mte;=Spacc StationOperation pen'od from 1995'2004;

460 km Space Stationaltitude;28.5 degree Space Stationinclination;0.97 totalCore Module

Configuration probability of no penetration; 588 m _ total Core Module Configuration debris

area; 10 cm bumper/wall separation; 0 degree impact angle (normal); 6061-T6 aluminum alloy

bumper; 2219-T87 aluminum alloywall;and 9 km/sec average impact velocity.

Because other approaches involve the analysis of existing protective structures designs,

the design methodology presented here is unique. The process begins with the definition of the

space debris environment to determine the critical design projectile diameter and density. The

design problem is then formulated in terms of a hypervelocity impact predictor as a weight
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minimization function of the independent (or designer controllable) variables. These variables

generally include bumper/wall material properties and thicknesses. The protective structures

system is then globally optimized using the Geometric Programming technique. Sensitivity

analyses are performed to investigate the effect of changes in the system parameters on the

optLm_aldesign. Several hypervelocity impact predictors are analyzed, including the WiUdnson,

Butch, PEN4, and Nysmith models, as well as combinations of these models.

1.5 Study Results

Y
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r
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1.6 Major Findings of This Study

_____!_i_!_!!i_!!i_i_i_iii_ii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiii_iii!iiii_!i!!_!_!!_!i!_!i!_!_!_i_!iii_!i!i!ii_i!i!_ii!ii_!!iiii!iiiiiii!ii!_iiiiiiii_!i_iiii!iiiii!iiiiiiiiiiiiiii_i_iii_i_iii_iiii!_!ii_ii_!_i!ii_i_:ii!_:_ii_@_i_i_iii_iii_i_!_!_=_iii_ii_i_

IB_I_ i__g_iiiiiiiii_!i!_i_!i_i_!_ii_iiiiiii_i_ii_!iii_i_i_iiiii_ii_i_ii_iii_iiii_!iiiii_!i_iiiii_ii_iii_i_i_i_iii_iiiii_i_iii_iiiii_iiiiii_!_i_=_i_=_

__iii_i_i_iiiiiii_!ii_ii_iiii_iiiiii_ii!_iii!_!i!i!i!i!!ii!i!i_i_i_ii_ii_i_ii!i_iii!iii!i!iii!i!i!i!i!i!!i!i!i!i!i_!ii!_!_!!!i!i!!i_i!i_i!i!ii_i!!_i!_i!i!_!!i!i!_!i!i_iiii_!_!i!i!i!_!ii!i!_i_i_i!i!_i!i_i!_!_!_!_i!i!i!iii!i!_!!!i!!i!_!i_i!i!i_i_ii!i_i_i_i_i_i_i_ii!_i_iii_i_i_i_i!i_ii_!i_i_i_i_i_!iii_i!i!i!i!_!_i!_!_!iii_!_!_ii_i!iii_i_iii_i!i
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2 ANALYSIS OF NEW SPACE DEBRIS ENVIRONMENTS

2.1 Earth Orbital Space Debris and Meteoroid Environs

The space debris environment model chosen for this study is due to Kessler _5. The major

dependencies considered involve space debris growth rate, spacecraft operational period,

mission altitude and inclination, spacecraft debris area, orientation, and probability of no

penetration.

The space debris flux is given by Kessler as

F (D, h, i, t, s) = B ¢(h, s )_t(i) (F 1(D)gl(t) + F2(D )g2(t)) [ 1]

where

t_(h,s) = ¢l(h,s)/(_t(h,s)+ 1)

_t(h,s) = 10(haoo-,n4°-lm

F_(D)= 1.05(10-5)/D_

F2(D) = 7.0(101°)/(0 + 700)'

gl(t) = (1 + 2P) '-19ss

• g2(t) = (1 + P )'- tgss

The spacecraft inclination factor for 28.5 degrees is 0.9135.

The cumulative flux N is given by

N= FA dt

which may be approximated using one year intervals by

N =A _ F(D,h,i,t,s(t))
t=t L

An Employee-Owned Company
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A Poisson arrival rate for space debris gives

Po = e_ [10]

A cio_ form _lution for D my be accurately found for particle diameters much smaller than

700 cm. This is given by

........ ( L05(10_S)(G_)_ _0_

°-i J [11]

where

Gj = _, ¢(h,s(t))gj(t) for j=l,2.
tm_

The average projectile mass density is given in gm/cm 3 by Kessler as

[12]

pp = 2.8 for D < lcm [13]

0p = 2"8/D°'74 for D > Icm [14]

This relationship is shown in Figure 2.1-1.

For an orbital inclination of 28.5 degrees, the non-normalized impact velocity distribution

isgivenby

f(V) = (14.46V - V2)(18.7e-<°'-ts.07y3.+14_+ 0.67e-<°'- 9.5o_.9z._) + 0.0116(28.91V - V 2) [ 15]

The normalized impact velocity distribution is given by

f(v)
L(v) =

'f(v)dv

[16]

'U

J

!

IIw

a +
+

Z

N |
g '
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,mlm_

This distribution is shown in Figure 2.1.2 for i = 28.5 degrees.

given as a function of impact velocity as

0 = cos-_(-V/15.4)

Finally, the impact angle is

[17]

This relationship is shown (with uncertainty bounds) in Figure 2.1-3 for a surface parallel to

the CIVIC velocity vector.

= .

w

3

w
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Z
W
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W
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0
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0 I I
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The totalmeteoroid environment flux-mass model isgiven by Cour-Palais32as

Loglo(N,) = -14.339 - 1.584 Loglo(m) - 0.063(Logzo(m))2

for

m e [10 -12,10_

and

Loglo(Nt) =-14.37 - 1.213 Loglo(m)

for

An Employee-Owned Company
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W

=

m _ [10 _, 1]

with shielding factor

1 + cos(t))
¢1=

2

i

R
---n

sin(t)) R + h

w

and gravitational defocussing factor

G - 0.43 + 0.57 [22]

where R is the radius of the shielding body (= 6378 km for Earth), and NR is the spacecraft range

_m the R_'s center in Earth i_i. _e velocity probability disu'ibution for meteoroids is

shown in Figure 2.1-4. The average mass density is 0.5 gm/cm _, with average p_cic velocity

of 20 kin/see.

0.$
e-

o.2s

._ 0.1S

i 0.1

i 0.05

z

_/--

I I

2o 4o
Velocity (kin/see)

I \

60 80

Figure 2.1-4. Meteoroid Velocity Probability Distribution
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2.2 Measures of Design Effectiveness

The traditional measure of protective structures design effectiveness is the probability of

no penetration of the pressure wall. This measure generally accounts for the risk associated

with the particle size, impact velocity, and impact angle. It may also include spall factors to

account for impact scenarios where penetration does not occur, but spallation does.

The probability of no penetration of aprotective structure generally does not reflect uncertainties

in the environment, in particular, the particle shape, density, and diameter. These uncertainties

may be estimated by establishing confidence intervals about the expected probability of no

penetration.

2.3 Potential Protective Structures Design Approaches

aOAx_elh  a

Active design includes debris mitigation and removal. Debris mitigation is the design of

spacecraft and launch vehicles to minimize the amount of debris generated through operations.

Debris removal includes the entrapment and/or possible destruction or disposal of debris.

Passive protective structures design is the placement of shields permanently spaced

outboard from the pressure wall to disrupt the incoming particle. One approach to providing

design insight is through the use of Geometric Programming (GP).

GP is a particular nonlinear programming (NLP) technique formalized by Duffin, Pet-

erson, and Zener 42in 1967. It is practiced by engineers, scientists, and mathematicians alike.

To appreciate the elements of GP requires a short mathematical presentation.

The prototype Geometric Programming problem is formulated in terms of posynomials -

An Employee-Owned Company
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polynomials with positive coefficients, positive-valued independent variables, and real expo-

nents. The problem is to ................................ _.....

n i

minf- Fdtci sl'Ilx _ [23]

subject to
_ =

_ k

g* =,-_t c, H x,"_ _ 1 l- 1,2, ...,p [24]
• t j= 1 _

Obviously, this is a great restriction in applicability, since not all NLP problems may be for-

mulated in terms of [23] and [24]. For problems of this form, including noneonvex programming

problems, GP provides the globally optimal solution.

One approach to solving this problem is to consider the dual problem, as justified by the

Arithrnctic-Geometric inequality. The dual Geometric Programming problem is given by

max v(8) = iOt(_. )s' (t0t _t_*(Ot (_,_)ga)) [25]

with

X 8,a + =0
i-t -.l\j.t i/

q = 1,2,...,k [26]

XSi=l [27]

=E =}.tt ./ 8it I 1,2,...,p [28]=_ ± -. 77 _

Clearly, equations [26]-[28] represent k+p+l equations in n+p+mt+m2+...+m v unknowns. If

k+ 1 >n + _ m I t29]

!11

J
J_

I

m

!

w

g

w

m
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L=.

then the system is overspecified. If, in addition, the system is inconsistent, then the problem

formulation or model selection must be reconsidered. If

k + 1 - n + ._ m, [30]
i=1

and the system has nontrivial determinant, then a unique solution for the dual variables exists.

If

then the system is underspecified.

by

k+l<n+ _ml [31]
1=1

The Geometric Programmingdegree of difficulty is given

DOD = n - k - I+ _ m t [32]
1=I

Optimal dual variables for systems with positive degree of difficulty may be found by using a

number of techniques, including search methods. Once the optimal dual variables are deter-

mined, they must be converted back to the primal variables using the relationships

f0 = v(8" ) [33]

k

ciiIJtx_=8_f o i= 1,2,...,n • [34]

k a. ,_'

I.tlcujRlxj_ = 8u 1 = 1,2, ...,p [35]

Note that this dual-to-primal conversion involves n+p nonlinear equations, and therefore rep-

resents a potentially difficult problem to solve in its own right.

Now, if the number of terms in the objective function (n) is large, and the number of

independent variables (k) is small, a large degree of difficulty problem often ensues (particularly

in a problem with few constraints). In these cases, solution of the dual problem may be quite
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lengthy, and a primal method may be in order. This strategy is further justified when gradient

methods are used, because the fwst and second (and higher-ordered)partial derivatives of the

independent variables are easily given as:

_fl J'

• } I __
[36]

k

[37]

Based on the relatively large number of recent applied Geometric Programming articles,

it is apparent that GP possesses a fairly high utility, particularly in the area of structural design.

Because GP is the only NLP technique which offers the guarantee of a globally optimal solution

for certain nonconvex problems, it should be considered more widely in practice. Additionally,

for zero degree of difficulty problems, GP can provide an analytic optimal solution for the

objective function and independent variables. This attribute provides greater insight for the

system designer than that obtainable by other NLP techniques. Finally, the values of the dual

variables may provide very'crucial design information alone in terms of the physical parameters

of the problem at hand.

Since its inception, GP has been widely applied to structural design optimization problems.

These problems may involve dynamic and static loadings, bo_h determinate and indeterminate.

The posynomial property of weight minimization for structural design problems matches nicely

with the GP technique. Additionally, since many structural design optimization problems

include a large number of independent variables, this reduces the degree of difficulty for the

GP process (see equation [32]).
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v

Recently, GP has been found to be widely applicable to the optimization of spacecraft

protective structures using analytic hypervelocity impact models. _°°t°s The posynomial nature

of these predictors is not unusual, since many physical phenomena may be attributed to a

geometric model.

The basic optimization problem is a weight minimization problem of the protective

structures. It has been shown t°s that for spacecraft structures with low curvature and relatively

large diameter, it is sufficient to minimize the total mass per unit area given by

2

W ffi _ p,t, [38]
i-I

In particular, this is true for the Space Station Core Module Configuration. Increasing the

complexity of the weight objective function by accounting for specific configurations only

serves to increase the complexity of the optimization technique and convergence time unnec-

essarily. No improvement in accuracy is achieved.

Three hypervelocity impact predictors, developed in the 1960's and displaying different

attributes of Geometric Programming are due to Wilkinson 1_°,Burch _ and Nysmith. us

The Wilkinson predictor is a piecewise differentiable model given by

0'364D3ppVc°s(0) for Dpp
t2= /.aS2p2 pd--T< 1, [39]

Dpp0"364D4p_Vc°s(0) for -- > 1. [40]
t'z- /._2pltlp 2 pltl

Under condition [40], the dual Geometric Programming objective function is given by

v(8)= (p_/8_)_ (ci/__

0.364D 4p2pV cos(0)

cl = taS2p,

An Employee-Owned Cornoany
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81+_ffi I [43]

8,-_=0 [44]

Equations [43] and [44] together imply

8_ = _ = 1/2
" __ ? .... z ......

The minimum weight and globally optimal thicknesses are given by

1.207D 2p,(L-_) ta

Wo= S

..... 2 f w,_a) "_ta
u._v P,t,-"4-J

tlo -- spl

[45]

[46]

[47]

0.604D 2pp(L-_) Is

%= Sp2

Thus, the globally optimal algorithm for the Wilkinson Predictor is .

[481

!_ii]iiiiiiiiiiiiiiiiiiiii{{ZiiiiiiiiiiiTiiiiiii!iii!iiiiiiiiiiiiiT!i_iii!Ti_!!_Ti!_ii__!!_iT_r_ii:!<rTi771{iii!iT_iiiTiiiiiiliiiiiiiiiiiiiii!iiiii!ii!iiiiiii!ii
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iiiTi!ii!iiT!{ili_iiNi{iT{iii{ii!{iiii!ii!iiii!i!i!ii!ii1171!11_ iiii7iilN!i)Jiiiiii!_ii!iii177iii i!!iiii!iiiii7!iiTiiiiiiliiiiiTiT!!Tii!iiiii{71iiTii!iii}iii{iiTiiiiiiiiiiTiiiiTiiiii)iiTiTiliiiiiiiT{{iiiiiiiii!i!!{ii!i71717!iiiii!ili77i171!i,iiiiiiiI,

!

Figures 2.3-1, 2, and 3 show the optimal design values of minimum system mass per

unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall sepa-

i|
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ram-

w

=

v

V

n

ration, and projectile velocity, respectively, for the Wilkinson predictor. In Figure 2.3-1, the

projectile density varies with diameter according to equations [13] and [14]. In Figure 2.3-3,

the impact angle remains constant at 0 degrees (normal). The optimal bumper and wall

thicknesses for the Wilkinson predictor are approximately equal due to the similarity in bumper

and wall material densities (see equations [47] and [48]).

5

Wilkinson Predictor

=_' " I_;ac;iS;_ri;_xa_;i; ..............................._ ..........................

................ I.....................7 ...............................................

S ,I ............ I

0 • ..... I I I
0 0.5 1 1.5 2 2.5

Projectile Diameter (cm)

Optimal Wall Minimum System Mass

Thickness (cm) Per Unit Area (gm/cm2)
Optimal Bumper

Thickness (cm)
-0

Figure 2.3-1. Optimal Design Value vs Projectile Diameter for Wilkinson Predictor
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Figure 2.3-2. Optimal Design Value vs Bumper/Wall Separation for Wilkinson

Predictor
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IWilkinson Predictor

Space Debris Example I ...............

IS= ............................................................

2

Optimal Bumper
Thickness (cm)

O

I I 1 I I I

4 6 8 10 12 14

Projectile Velocity (km/sec)

Optimal Wall Minimum System Mass

Thickness (cm) Per Unit Area (gm/cm2)
..... !! .....

Figure 2.3-3. Optimal Design Value vs Projectile Velocity for Wilkinson Predictor

w

The normal impact predictor for the Burch model is given in functional form as

wh_e

FI = 2.42(tl/D)-o.33 + 4.26(tl/D )0.33_ 4.18

Equation [50] may be approximated by

An Employee-Owned Company
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1.71
K --F_ -"2.8(ti/D)°_7+1.58(tl/D)-°m

Then W isgiveninposynomialform as

W = pttl + p2C--K

where

SO.71

The dualGeometricProgramming problem istomaximize

subject to

v(8) .... _ (2"802_D-°'57

8t+ 0.57%- 0.57_ = 0

3

Z 8i=I
i=l

Equations [55] and [56] may be partially solved to give

= 2.330 - 1.57_)

8, = 1.33(283- 1)

Since the dual variables must all be positive, we have

0.5<_<0.64

Thus, the one degree of difficulty algorithm is given by:

[51]

I$

W

[52] ,j

III

[53]
II

[54]

[55]

[56]

[57]

[581

[59]
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7

Figures 2.3-4, 5, and 6 show the optimal design values of minimum system mass per

unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall sepa-

ration, and projectile velocity, respectively, for the Burch predictor. Figure 2.3-4 reflects a

constant projectile density as given in equation [ 13]. In Figure 2.3-6, the impact angle remains

constant at 0 degrees (normal).
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Figure 2.3-6. Optimal Design Value vs Projectile Velocity for Burch Predictor

The Nysmith equation was developed for meteoroid impacts and may be written

5.08V0_SD z_

t2 _" t10.528S 1.39 [60]

with inequality constraints

tl
-- < 0.5 [61]
D-

and
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v

t,

_ 1.0 [62]
D

Substituting equation [60] into [38] results in

5.08V°_SDz_

W "-tI+ /,io.528S1.39 [63]

The problem constraints may be rewritten

D

t,<_- [64]

21.72V°-S_D 3.6s6

t,> SZ633 [65]

The first step in this analysis is to determine when the problem is feasible. This corresponds

to the question: When is the constraint set defined by [64] and [65] nonempty? Clearly, this

is the case if

D 21.72V°ZZ_D3636
-- > [66]
2 S z633

----

or

A more usableform isgiven by

0.239S
D < _ [67]

vo-2

S > 4.184D V °'2 [68]

The conditions of existence of a local (and thus global) optimal solution to the problem

D _ 0.23SV -°'2 [69]

willnow bc established.

If
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then the optimal solution to the problem exists and is given by

1.907V°'lSZD L91

tlo = $o.91 [70]

3.613vo.m D 1.91

/20"- so.91 [71]

5.520V _l S2D1.9t

W o = so.9 t [72]

Note that the ratio of optimal bumper thickness to total thickness is 0.345. The corre-

sl_nding ratio for the wall is 0.655. Thus, provided the values of the systemic parameters satisfy

[69], _¢se n_0s are constant:

Finally, notice that we provide optimality conditions for most of the feasibility region. In

fact, it is now only necessary to determine the existence of optimal solutions in the interval

0.23SW °a"<D < 0.24SV "0"2 [73]

Figures 2.3-7, 8, and 9 show the optimal design values of minimum system mass per

unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall sepa-

ration, and projectile velocity, respectively, for the Nysmith predictor. Figure 2.3-7 reflects a

constant meteoroid density. In Figure 2.3-9, the impact angle remains constant at 0 degrees

(normal).
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Figure 2.3-9. Optimal Design Value vs Projectile Velocity for Nysmith Predictor

We now consider the combination of impact predictors corresponding to ballistic, pro-

jectile shatter, and projectile melt/vaporization regions. The optimization problem is fast

formulated and then solved for these three impact regions. These optimal solutions are then

integrated into an overall optimal solution. The predictor equations chosen are based on previous

work performed by Boeing. The ballistic, projectile shatter, and projectile melt/vaporization

predictors are given by the PEN4, Burch, and Wilkinson models respectively.

F_
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The PEN4 model in functional form is given bY the foU0w'mg set of equations:

(clpp _°'31 (0.281D pp _tn .,,

32

[74]

a-b

cl = _ [75]

2 2 2
a = 1.33V Rppp [76]

[77]b = 8S, t,e'3a_'°%v/cos(0)

c = 1.33R_p, [78]

[79]

This set of equations is valid for

d = Rvt, ptl cos(O)

where

v <_vf+4ooo [80]

VI=4100 if fi/D <0.4 [81]

7

Vf = 4986(q/D)°el if q/D > 0.4 [82]

When equations [74]-[79] are substituted into equation [38], a one-dimensional search is per-

,,3a_lo-')v

t,=O.16625V2R_op cos(O)" _ .....
,57 t

[83]

formed on tt with initial point

tort_c_sP0nding to t,z= 0: When a local optimal solution is determined, condition [80] is checked

to determine if the ballistic region is appropriate for consideration.
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The Butch model is actually two separate predictors, one for normal impacts, and one for

oblique impacts. The normal impact predictor is given in functional form in equations [49]

through [53]. The oblique Burch predictor is formulated in terms of flight path and normal path

penetration as

Fl + 0.63F2 _,z_h=D Np ) (C/V)_ (D/S)_

where Ft is as defined in [50] and

F 2= 0.5- 1.87(t,/D)+ (5t,/D- 1.6)Zs+ (I.7- 12t,/D)z

Z = tan(0)- 0.5

The weight minimization problem may then be formulated as

W = pltl + p2tz

subject to

where

[84]

and h is given by [84].

with objective function

where

[85]

[86]

[87]

Nn_0.85 [88]

N# = Fs(D /tO (C /V) us [89]

F3 = 0.32(tl/D )s_s+ 0.48(tl/D)lrs sinS(0) [90]

This problem is solved using an exterior penalty function technique

#(t,) = w + 8K(N#- 0.85)5 [91]

G = 1 if NN - 0.85 ->0 [92]
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8 = 0 ifN N - 0.85< 0 [93]

A random searchwitha 99% confidenceintervalof0'01inchesisperformed, and K isincreased

until.......... _....... _......_

8K(NN- 0.85)2< e

The random search interval for tl is specified by using the single plate equation

[94]

.. 0352 1/6..0.875
tt=Alm' 13p V [95]

0.816

Ks - e 11np]a [96]

The interval is then given by [0,tl].

Due to the discontinuities existing between the three impact predictors, an integrating

algori_must be developed. This algorithm is included for fixed velocities.
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m

Once the optimal bumper and wall thicknesses are determined for each velocity, the

integrated optimal bumper and wall thicknesses are found from

t_ = _ov==t_(V, O(V))f, fV)dV fori=l,2. [97]

Real Time/Reactive DesiL_,n

Real time and reactive protective structures design refers to the concept of performing

design in orbit through the use of smart structures, smart materials, or the combination of passive

and active design techniques. The real time design approaches may be accomplished through

particle sensing either before or during impact. Impact particle mass, velocity, angle, and

location prediction is performed to provide the necessary algorithmic information to the

structure/material controller. The material/structure is then configured to defeat the specific

impact scenario anticipated. Real time/reactive protective structures design provides the most

flexible and safest design alternative available, but also stresses technology the most.

2.4 Aluminum Alloy Bumper Materials

A comparison of aluminum alloy bumper materials is shown in Table 2.4-1. As shown,

the minimum weight alloy is 2011-TS. Note the wide variation in CMC weights for different

aluminum alloy bumper materials.

Figure 2.4-1 shows the distribution of optimal bumper and wall thicknesses by hyper-

velocity impact region for the 2011-T8 aluminum bumper material and 2219-T87 aluminum

wall material. Note that the optimal bumper thickness is most heavily influenced by the projectile

melt/vaporization region, while the optimal wall thickness is most heavily influenced by the

projectile shatter region.

r_
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Figure 2.4-2 shows the percentage area under the velocity probability distribution for the

2011-T8 aluminum bumper. Nearly 2/3 of the likelihood of impacts is above 8 km/sec, where

testing is not generaliy att,3ina_9+ :_: : _ _ :

Figure 2.4-3 shows the optimal 2011-1"8 bumper thickness as a function of projectile

diameter. This relationship is quite Linear. Shown in Figure 2.4-4 is the optimal 2219-T87 wall

thickness as a function of projectile diameter. This relationship is slightly convex. Figure 2.4-5

gives the minimum module weight (normalized to the baseline case) as a function of projectile

diameter for the 2011-T8 bumper case.

Table 2.4-1. Comparison of Aluminum Alloy Bumper Materials

==

ALUMINUM OPTIMAL OPTIMAL WALL MINIMUM CMC
ALLOY BUMPER BUMPER THICKNESS (CM) WEIGHT (KG)

TYPE

2219-T87
I100-HI8
2011-T8
2014-T6

2024-T81
5005.H18
5050-H38
5052-H38
$056.H38

5083-O
5086-0

5154-H38
5357-H38

5456-0
6061-T6
6063-T6
6101-T6
6151-T6
7075-T6

THICKNESS
(CM)

0.46
0.50
0.46
0.44
0.44
0.49
0.49
0.49
0.49
0.53
0.55
0.49
0.48
0.52
0.48
0.48
0.49
0.48
0.43

0.65
0.64
0.64
0.71
0.72
0.64
0.64
0.65
0.66
0.65
0.65
0.65
0.64
0.65
0.64
0.64
0.64
0.65
0.71

5715
5839
5665
5910
5929
5760
5768
5748
5762
5978
6059
5769
5737
5942
5695
5737
5760
5719
5858
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2.5 Bumper/Wall Separation

Figure 2.5-1 shows the decreasing relationship between minimum CMC weight and

bumper/wall separation/_e_C weight shown is normalized t0 the baseline minimum weight

of 5665 kg given in Table 2.4.1. Note that increasing the bumper/wall separation from 10 to

15 era results in a 25% decrease in CMC weight. The optimal bumper/wall separation of roughly

200-250 cm which minimizes the normalized minimum CMC weight is shown in Figure 2.5-2.

Finally, the optimal bumper and wall thicknesses as functions of bumper/wall separation are

given in Figure 2.5-3. This depicts a fairly constant optimal ratio between bumper and wall

thickness.
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2.6 Space Station Altitude

Figures 2.6-1 and 2.6-2 show the relationships between Space Station altitude and pro-

jectile diameter and minimum CIVIC weight, respectively. Note the high sensitivity of design

weight to altitude between 200 and 1000 kin. The optimal bumper and wall thicknesses as

functions of Space Station altitude are given in Figure 2.6-3.
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2.7 Risk Considerations

particle Velocity

Figure 2.7-1 shows the normalized debris velocity probability distribution for the Space

Station at 28.5 degrees inclination. Note the wide distribution of potential impact velocities

from 0 to roughly 15 kin/see. Recall, also, the widely differing structural responses, and thus,

optimal designs, over this velocity range. Figure 2.7-2 shows the cumulative normalized

velocity probability distribution for the Space Station.
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Particle Impact Angle

The relationship between particle impact angle and velocity as prescribed by [17] is shown

in Figure 2.7-3. Uncertainty bands are included as dashed lines. Figure 2.7.4 shows the

normalized angular probability distribution for the Space Station. Again, the optimal protective

structures designs vary greatly over this range. Figure 2.7-5 shows the cumulative normalized

angular probability distribution for the Space Station.
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Particle Arrival Time

The particle arrival times are generally assumed to be Poisson distributed. Thus, the

particle interarrival times are exponentially distributed. However, the mean times of arrivals

change over time, and therefore, particle arrival times follow a nonstationary Poisson process.

The obvious risk associated with the particle arrival times is not knowing when impacts will
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occur. Sensor data could reduce this risk.

Mission Risk

Figures 2.7-6 and 2.7-7 show the relationships between total CMC mission risk and

projectile diameter and minimum CMC weight, respectively. The weight shown is normalized

to the baselined weight of 5665 kg. CMC mission risk is def'med as one minus the total CMC

probability of no penetration. Note that an increase form 0.03 to 0.05 in mission risk results in

a 30% protective structures design weight reduction. The optimal bumper and wall thicknesses

as functions of mission risk are given in Figure 2.7-8.
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Mission Duration

Figures 2.7-9 and 2.7.10 show the relationships between Space Station beginning year

of operation and projectile diameter and minimum CMC weight, respectively. Note the convex

shape between 1995 and 2000 followed by a concave representation through 2005. This is due

to a benign solar flux effect in the latter years. A schedule delay of 5 years results in a 50%

increase in protective structures design weight. The optimal bumper and wall thicknesses as

functions of fast year of operation are given in Figure 2.7-11.
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Figures 2.7-12 and 2.7-13 show the relationships between Space Station mission duration

and projectile diameter and minimum CMC weight, respectively. These trades are for constant

beginning years of operation of 1995. Note the shape reversal occurring at about 15 years. This

is due to a solar flux effect for that particular period. A 10 year increase in mission duration

more than doubles protective structures design weight. The optimal bumper and wall thicknesses

as functions of Space Station mission duration are given in Figure 2.7-14.
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2.8 Uncertainty Considerations

Particle Diameter/Space Debris Growth Rate

Figures 2.8-1 and 2.8-2 show the relationships between space debris growth rate and

projectile diameter and minimum C/vIC weight, respectively. Note that the design implications

are more severe than that indicated by the growth in projectile diameter. This is due to the fact

that the structural response of the protective structures is a nonlinear function of projectile

diameter growth. Additionally, note that an increase in space debris growth rate from 5% to

8% results in a 50% increase in minimum protective structures design weight. The optimal

bumper and wall thicknesses as functions of space debris growth rate are given in Figure 2.8-3.
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Note that the optimal ratio bctwe,en bumper and wall is fairly constant up to about 6% debris

growth rate, and then decreases as the wall thickness becomes a greater influence on protective

structures design.
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Particle Shape/Density

The distribution of particle shapes for space debris in orbit is unknown. The potential

variation in protective structures design effectiveness due to changes in particle shapes has been

shown by hydrocode and impact test data to be relatively large.

The particle density is generally unknown as well. It is modelled as a decreasing function

of projectile diameter as shown in Figure 2.8-4.
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Uncertainties in Risk Parameters

Although distributions exist for the risk parameters, these are Subject to uncertainties in

their accuracy and development. For instance, the distribution of projectile velocities is subject

to uncertainties. Uncertainties in mission risk may be measured by establishing confidence

intervals about the expected mission risk.
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2.9 Second Order Parametric Analyses

This section includes numerous design trade paramctrics to aid the designer in

decision-maltingand designconsequences ofenvironrnent-relatcdissues.The fourindependent

variablesshown arebumper/wall separation,space debrisgrowth rate,CMC mission duration,

and CMC mission risk.

Bumner/Wall Separation

Figures 2.9-1 through 2.9-3 show the effects of bumper/wall separation on minimum

CMC weight for various space debris growth rates, CMC mission durations, and CMC mission

risks, respectively. Note, for instance, that the protective structures designer can maintain

equivalent weight if the space debris growth rate is actually 7% by increasing the bumper/wall

separation from 10 to 15 cm.

$oace Debris Growth Rate

Figures 2.9-4 through 2.9-6 show the effects of space debris growth rate on minimum

CMC weight for various bumper/wall separations, CMC mission durations, and CMC mission

risks, respectively. Note, for instance, that the protective structures designer can maintain

equivalent weight if the space debris growth rate is actually 9% by increasing the mission risk

from 3% to 5%.
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CMC Mission Duration

Figures 2.9-7 through 2.9-9 show the effects of CMC mission duration on minimum CMC

weight for various bumper/wall separations, space debris growth rates, and CIVIC mission risks,

respectively. Note, for instance, that if mission duration increases from I0 to 15 years, the

protective structures designer can maintain equivalent weight by increasing the bumper/wail

separation from 10 to 20 cm.

CMC Mission Risk

Figures 2.9-10 through 2.9-12 show the effects of CMC mission risk on minimum CMC

weight for various bumper/wall separations, space debris growth rates, and CMC mission

durations, respectively. Note, for instance, that if mission risk increases from 3% to 10%, the

protective structures designer can afford to reduce the bumper/wail separation from 10 to 5 cm

while maintaining weight.
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2.10 Conclusions and Recommendations For Section 2
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3 PROTECTIVE STRUCTURES DESIGN OPTIMIZATION CODE

(PSDOC) OVER_W

PSDOC (Protective Structures Design Optimization Code) was developed under NASA-
......

MSF_ Contract NAS8-37378 "Optimization Techniques Applied to Passive Measures for In-Orbit

Spacecraft Survivability". The purpose of PSDOC is to provide a user-friendly PC environment

for a number of design and analytical tools including IMPACT10V, developed by SAIC. Specific

analysis areas for spacecraft protective structures design optimization include selection of envi-

ronment, spacecraft characteristics and mission, and hypervelocity impact p_ctormodcls. The

significant features of PSDOC are a menu-driven scenario and input capability, post-processing

features, and file management system.

The application of SAIC's Flexible Model - Graphical User Interface to PSDOC was but one

_utilizati0n of this-software. The graphical user interface _nvironment used for PSDOC was

developed for assisting technical personnel in gaining accesst oc0mputer bas_edm0delswithout a

thorough knowledge of the code itself. Other applications are easily fitted to existing models by

SAIC engineers and software scientists, Attachments of this GUI software to existing models or

"Retrofitting" allows for newer coding techniques and hardware technology advancements to be

immediately available to older, validated models without affecting the code's reliability. Once this

!nitialc0nnection has been _e and checked with the Original Version.additional input and output

alterations to the model are often desired and can be handled by SAIC staff under the direction of

our customers.

The PSDOC environment (retrofit to IMPACT10) was developed in coordination with

Sherman Avans and Jennifer Robinson of NASA-MSFC and Robert Mog, Andy Laidig, and Kevin
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V

Leonard of SAIC. The PSDOC user's manual delivered to NASA-MSFC in Aug. 1990 presents

an overview of the windowing techniques and operating instructions for use of the PSDOC envi-

ronment. This manual contains all the necessary information for efficient use of PSDOC.
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4 MONTE CARLO SIMULATION ANALYSIS TOOL

4.1 Monte Carlo Simulation Purpose

The purpose of this simulation is to provide a statistical tool to address and quantify

protective structures design risks, uncertainties, and options, and to address system-level issues

relevant to designer decision-making and possible implications. The system of initial interest

is the structural configuration of WPO 1, including the Core Module Configuration. "Grow-to"

systems include module internal configurations and external structures (trusses, solar arrays,

etc.) as specified in the redesign.

Initial investigations of interest include statistical analyses of primary impacts, penetra-

tions, and vulnerable areas. "Grow-to" investigations include interior effects, secondary ricochet

effects, and SSF element interrelations.

Risk considerations include environment particle velocity, impact angle, and component

probability of impact. Uncertainty considerations include SSF IOC/FOC, particle diameter,

mass-density, shape, and uncertainties in particle velocity and impact angle distributions.

4.2 Monte Carlo Simulation Development Approach

The tool development approach is to define the current SSF mission parameters and design

configuration, and interpret the geometry mathematically using FASTGEN. The mission

parameters drive requirements specification, including environment definitions. These con-

siderations, combined with appropriate random number modules and the FASTGEN results,

produce the necessary shotline time histories and intersecting body calculations. Survivability

assessments follow and employ deterministic models for hypervelocity penetration prediction.

Statistical assessments follow to supply answers to the questions of interest.
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The top-level version of the Monte Carlo simulation tool will be executed on IBM-

compatible PC's. The current version of this tool runs on a VAX. It is anticipated that the

detailed version of this tool will operate on a CRAY. I/O requirements are discussed in Section

4.4.

Verification and validation of the tool will be performed using a combination of PSDOC

and BUMPER. If the program execution times arc considerable, a design of experiments

approach will be used to specify production run matrices.

4.3 Particle Time-Arrival Process for Monte Carlo Simulation Development

Several algorithms have been developed for the particle time-arrival process. The standard

assumption in this area is that arrival times are Poisson distributed. This means that the inter-

arrival times are exponentially distributed, and sorting of arrival times is not required. Mean

data is derived from the environment flux and appropriate spacecraft areas. This algorithm

leads to a terminating simulation defined by the mission profile.

Realistically, however, the meteoroid and debris environments arc both nonstationary

Poisson processes, at best, since the mean arrival rates vary in time over the mission profile.

An approximation algorithm has been developed which alters the mean arrival rate to represent

the time period under consideration. However, this algorithm is not exact, since a period of

high arrival rates could be neglected using a low arrival rate corresponding to the previous

period, or vice versa. Thus, a more exact (continuous) algorithm should be developed. The

approximating algorithm for the space debris environment is given as:
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If independent mean and variance data for arrival rates are available, a uniform arrival

process may be used as an alternative to Poisson arrivals. To compare this approach with the

Poisson process, the variance may be set equal to the square of the mean. An algorithm has

been developed for independent mean and variance data.
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Augmentation/repair times may be modelled using a number of distributions, if this

modelling is of interest. If mean data only for time to repair is available, an exponential service

model may be used. If independent mean and variance data are available, the gamma, weibull,

lognormal, or beta distributions may be appropriate.

4.4 Simulation Status

To date, the following items have been completed:
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The followingitemsremaintobc completed:
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5 DEVELOPMENT OF ADVANCED SHIELDING CONCEPTS

5.1 Introduction

The development of advanced shielding concepts presented in this section is a preliminary

theoretical modification of the Wilkinson and ballistic PEN4 predictors to multiple bumper

situations. The intent is to perform this preliminary analysis, and then correlate the results with

existing test data to improve the models.

5.2 Extension to Multiple Bumpers for Wilkinson Predictor

A number of different approaches have been attempted to modify the Wilkinson predictor

mathematically for multiple bumper systems. The one successful approach (physically) is given

asfollows:

1. Modify the Wilkinson form in a product sense as:

0.364D 3ppV cos(0) D pp

t.= (._,] for ._""i_ < 1,L. _tS p. 1-11"Ipd_

[98]

0"364D4p_Vcos(0) for Dpp

t.= t'.-I 2"_{.-1 ) .-!L.I n siIt ri pit,p. H p:,
_,i=l ,]_i=l i=l

> 1. [99]

If our goal is to minimize system mass per unit area subject to the total separation between first

bumper and last wall equal to some desired value, we may write this as

.-I 0.364D4p_V cos0
minW= Y_mi+ /',-i "_(.-i "_

,-,
[IOO]

n-I

s.t. E Si = Sror
i=l

[101]

where mi = P:i [102]
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STo T is the total separation between the first bumper and the wall, and n- 1 is the total number of

bumpers (n is the total number of plates).

Under condition [99], the dual Geometric Programming objective function is given by

,.-i s_ 5. _.-1( 1 _, .]aj

maxv(a) = ,.,]-[(liar) (K/a.) it, J"\I'I/Sror_ ) ) [103]

K = 0"364D4p2pV c°s(e) [104]
L,

Y.8,= 1 [lO5]
i=1

8_-8_ =0, i = 1,2,...,n- 1 [106]

-28, + $j = O, j = 1,2,...,n - I [107]

It,-j_, 8_ [108]

Note that the degree of difficuliy-is 0, with 2m2 independent variables corresponding to the n- 1

bumper areal densities and the n-1 separations.
%

Equations [106] and [107] together imply
Q

8i-8 . = 1/n, i = 1,21...,n- 1 [1091

8_ = 28, = 2/n, j=l,2,...,n-1 [110]

The minimum weight and globally areal densities are given by

;la-2

[111]

2a-2

=,=[ 1j i = 1,2,...,n [112]
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The optimal individual separations are given by

SToT

S_, = _-__ 1, j = 1,2,...,n-1 [113]

The optimal separations are equal and uniformly distributed over the total available separation.

Thus, the globally optimal algorithm for the multi-bumper Wilkinson Predictor is

_m

w

L=

5.3 Results

Several results using the development of Section 5.2 are given in this section. The baseline

assumptions axe a particle density of 2.8 gm/cm 3, velocity of 9 km/sec, diameter of 1 cm,

impacting normally into a configuration with a total bumper/wall separation of 10 cm.

Figures 5.3-1 and 5.3-2 show how the optimal protective structures design configuration

varies with number of bumpers for projectile diameters of 1 and 3 cm, respectively. Note that

for a 1 cm particle diameter, the optimal number of bumpers is 2, while for 3 cm, it is 3 bumpers.

Also, note the significant penalty for choosing the wrong number of bumpers in these cases, as

well as the lack of symmetry of these penalties about the optimal number of bumpers.
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Figure 5.3-3 shows the optimal protective structures design configuration including

optimal number of bumpers as a function of particle diameter. Increasing particle diameter

results in an increasing optimal number of bumpers to defeat the particle. Note the optimal

transition regions between 1 and 2 bumpers (corresponding to particle diameters between 0.75

and 1 cm) and 2 and 3 bumpers (corresponding to p_cle diame_r s betw_n 2.25 and 2.5 cm).

Also, note the very linear minimum system areal density, showing the stabilizing effect of

increasingthenumberof-bum_i_(heconiqguradon_ : < _ :

Figure 5_-4:howsth e optimal protectizes_ctures design config_tion including

optimal number of bumpers as a function of particle velocity. The most striking feature of this

trade is the relative insensitivity to velocity for a dual bumper system,
" -: y: _z,

Figure 5.3-5 shows the optimal protective structures design configuration as a function

of total bumper/wall sep_tion, AS in prev{ousstu_es, there is a large weight incentive for

increasing the total separation. Furthermore, increased separation allows for more bumpers to

disrupt the incoming particle.

_ Figure 5.3-6 is a replica of Figure 5.3-5, except that the optimal individual separations

are included.
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Figure 5.3-1. Determining Optimal Number of Bumpers for Modified Wilkinson
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5.4 Extension to Multiple Bumpers for Ballistic PEN4 Predictor

The multiple bumper rccursion equations are  ven by:

V/= 4100, _- < 0.4 [114]

V¢ = 498_DT--2/°2_, -_>0.4 [115]

r¢ 0.6T_ ]_'3'2Syj] ''z
Lt, t,_,# cos(O) pp j

[116]

The f'u'stbumper is penetrated if
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...=

'="W

V > V_/= i

The residual velocity(from the firstbumper) is

1.33R_p, + R,T,p,/cos(O) J

The second bumper ispenetratedif

The residualvelocity(from thesecond bumper) is

_[l '°
The thirdbumper ispenetratedif

[117]

[118]

[I19]

[120]

[1211

L

The residual velocity (from the (n-1)st bumper) is

2 2 ( -o.ooo3ns%. h n_a
1.33V_._RpP,-L8S,._,T,,_,e -:fCOS(O) /

J

The nth bumper is penetrated if

v,._>V,o,..

[122]

[123]

Given 6061-T6 aluminum bumper materials (yield strength of 35 ksi, density of 2.71

gin/era 3, total thickness of 0.16 cm), 2219-T87 aluminum wall (yield strength of 51 ksi, density

,IF Uil
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of 2.81 gm/cm 3, thickness of 0.3175 cm), a projectile density of 2.81 gm/cm 3, and a projectile

impact angle of 0 degrees (normal), Figure 5.4-1 shows the ballistic limit curves for single,

double, and triple bumper configurations. Note the relatively minor sensitivity to number of

bumpers over this limited range.
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5.5 Advanced Shielding Concepts Status

To date, these multibumper concepts have been shown for a theoretical modification of

the Wilkinson predictor, as well as for the ballistic PEN4 predictor. It is recommended that

these concepts be extended to the Burch predictor, and that the Wilkinson extension be correlated

with hydrocode data and the Butch extension with impact test data.

w

v

r

_ ._ An Employee-Owned Company



92 ,_

6 DISCRETE PROTECTIVE STRUCTURES DESIGN OPTIMIZATION

6.1 Introduction

Within the field of nonlinear programming lies a technique called geometric programming.

Geometric programming is apureTy algebraic method _hat provides globall and often analytic,

solutions to certain problems previously discussed in Section 2.3. These problems are called

posynornial programs, and they are generally nonconvex, nonlinearly constrained formulations.

The field of geometric programming has been extended to programs which are not

posynomiais; 43'u'll_'n2 however, the global features of the solution are not retained in this

extension. Thus, the term posynomial programming, sometimes called prototype geometric

programming, refers only to programs composed entirely of posynomials.

In general, discrete nonlinear optimization techniques are even less capable than con-

tinuous ones of providing global and analytic solutions. |23 In particular, many current discrete

nonlinear techniques employ branch and bound derivatives, which generally do not result in

global optimization properties, except for convex programming problems. Discrete posynomial

problems which can be transformed to prototype geometric programs, on the other hand, result

in global optimization upon transfer to the dual. The general transformation can then be applied

to engineering design problems with independent variables restricted to standard or discrete

availabilities.

This subtask addressing the development and application of discrete nonlinear optimi-

zation techniques is not required in the Statement of Work, but is a natural extension of the

traditional continuous optimization problem. A full treatment of this subtask is given in

Posynomial Programming With Apnlications To Spacecraft Protective Structures DesiL_n
_ _ _:_L

An Employee-Owned Company

= =

m

Z

Wm

m

J

q

m
m

m

g

m

i

WiJ

q

w

g

L_

mm

L_

U



i

93

L

w

=

_21I._lll_.ll, by R. A. Mog. The goal of this subtask is to develop a theory for solving nonlinear

programming problems that may be stated in standard posynomial form under the guidelines

of prototype geometric programming, but with discrete constraints on the primal independent

variables. The main development thrust is in the direction of dual program solution methods,

although primal solution techniques are also developed. Dual method solution approaches will

depend on problem degree of difficulty, but for problems with nontrivial degrees of difficulty,

partial invariance and direct search techniques are investigated for their utilivy. Because sig-

nomial (polynomial with undetermined coefficients and real exponents) programming methods

do not result in global optimization, extensions of discrete techniques to signomial and reversed

inequality constraint problems are considered secondary to this effort.

Another goal of this subtask is to demonstrate applications of the developed discrete

posynomial programming methodologies. These applications include challenges in the field of

spacecraft protective structures design optimization and emphasize missions that are relevant

to Space Station Freedom and space debris/meteoroid environments. Specific hypervelocity

impact predictor models include those of Nysrnith, Wilkinson, and Burch.

Subtask Approach

After a brief review of posynomial programming in Section 6.2, two primal methods for

solving the discrete posynomial program are introduced in Section 6.3. The methods are

numerical in nature and easy to apply to practical problems. However, no global or analytic

information is guaranteed in their application. Therefore, in Section 6.4, a dual method is

developed which provides the global optimal solution to the discrete posynomial program.

Finally, three case studies which illusu'ate the capabilities of the primal and dual methods in

this field are presented in Section 6.5.
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6.2 Review of Posynomial Programming

In a search performed at the RedSt0ne Scientific Info_fi0n Center (RSIC) to determine

d-oc-u_riefi-tswith the key_/6id_ "(]_tmet_c _gf__"-_/_[tKefth_ _6_6£a_bstract, a total

of 92 listings were found. Of the 92 listings, approximately 34 were theoretical and 58 applied.

Most of the theoretical lis_tlngs dealt with algofithtra'c improvements, code comparisons, tutorial

papers explaining the method, and theses on specific areas of geometric programming devel-

opments. "Of the 58 applied listings, almost all involved structural design appli-

cations. |3;|_3%Sg'7°'79,_9_'|°7-||2"|:_s'|_'|'|5.tS|'|Sz|55 Other applied areas included economic, _

communications, _ and traffic flow problems. 59"l_erl_a_s_rn_ s_Hslng is that 27 of the 92

listings were written after-J9801 Since geometric pr0_ng was formalized in 1967, this

points to a possible resurgence in the method's use.

The most interesting conclusion from the article survey is that the relatively large number

of application papers conflicts with the dismissals of many textbook authors concerning the

utility of geometric programming. With this many listings, it is clear that some scientists are

finding great uses for GP. =_

Based on the relatively large number of applied geometric programming listings in the

article survey, it is apparent that GP possesses a fairly high utility, particularly in the area of

structural design. Because GP is the only nonlinear programming (NLP) technique which offers

the guarantee of a globally optimal solution for certain nonconvex problems, it should be
2 2L 2_ 7 i

considered more widely in practice, additionally, for zero degree of dimculty problems, GP

can provide an analytic optimal solution for the objective function and independent variables.

This attribute provides greater insight for the system designer than that obtainable by other NLP

techniques. Finally, the values of the dual variables may provide very crucial design information

alone in terms of the physical parameters of the problem at hand.
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6.3 Discrete Posynomial Programming Using Primal Methods

In/xaslul:ti 

As explained earlier, geometric programming includes both posynomiai and signomial

programs and dual and primal approaches. In this section, a primal method for solving discrete

posynomial programs is developed. The technique employed is an exterior penalty function

method 1°'s3supported by two alternate search techniques: a random/exhaustive search 53and a

Hooke and Jeeves pattern search. 1°'s3 The primal methodology computer code is called

POLYPRIME.FOR and is given in Appendix A.

Penalty Function DeveloDment

Penalty function techniques are widely used numerical optimization methods which

convert constrained optimization problems into unconstrained ones with appropriate penalties

for not satisfying the constraints, t°'s3 Two general classes of penalty functions exist: exterior

and barrier functions. Exterior penalty function methods generally begin with points outside

the feasible solution space and progressively drive the solutions into the feasible region. Barrier

function methods require feasible initial points in setting up blockades along the constraint

surfaces.

For the problem of solving the primal formulation of discrete posynomial programs, an

exterior penalty function technique is chosen to relieve the analyst of the burden of specifying

a feasible initial point. This requirement could be particularly difficult when combinations of

continuous and discrete constraints are involved. The primal problem is specified as

a k

rain f= i..,y_ cii_*, x_'° [124]

m_ k

s.t. g,=i_lC, i_lX_¢<Ki, / = 1,2,...,p [125]
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and the additional discrete constraints

xj = r_nj, j= 1,2,...,q <k

m

One choice for an unconstrained penalty function is :

[126]

where

nfmO = Y., c, I'I x_ + _ 8tA,I E cu I-I x -1(il + E Aj% I--- -- [127]
'-t _-_ U-1 _.1 ' ) _._ rj Lr_l.J:

8t = 1, gl- KI > 0 [128]

81=0, gt-Kt <O, l = l,2,...,p [129]

AJ = 1, j = 1,2, ...,q. [130]

_, it is _sum_, wl$out:_oss o_ geneiahty, that the xj s may be reordered such that the first

q of them are those requiring discrete solutions. Also, the discrete penalty term has an exponent

ofl/2 to require a stricter meas_ of convergence, since

In POLYPRIME.FOR, the accelerating factors begin at 1.0 and progressively are multiplied by

[132]

10 until convergence is reached, i.e.

'/"' 12.
1=1 i ' a.i.

Note that this method handles mixed discrete problems as well as continuous and purely discrete

problems. Furthermore, note that although we are strictly concerned with posynomial pro-

gramming problems, this penalty function approach is equally valid for generalized polynomials

or signomials and signomial constraints. Additionally, Type I, II, or III inequality constraints

axe valid. However, the constraints must be converted to Type I, less than or equal to constraints,
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for implementation in POLYPRIME.FOR. Similarly, the constraint right hand side values, Kt,

may take any real value. This is a more generalized form than that allowed for prototype

posynomial programming where the Kt's must be equal to 1 for all constraints. Finally, note

that if convergence of continuous equality constraints is difficult to achieve using this formu-

lation, it may be easily modified by adding a penalty term for equality constraints separate from

inequality constraints. Note, however, that continuous equality conswaints combined with

discrete variable constraints could easily result in no feasible solution situations.

Now, once the unconstrained penalty objective function is established, a method to

minimize it must be found. Two approaches using search techniques are discussed in the next

two sections, followed by a comparison of the methods.

Random/Exhaustive Search Subteehnioue

A random search technique 53 is analogous to throwing darts at a dartboard with no

adaptation or learning between throws. (There do exist adaptive random search techniques, but

these won't be considered here.) Although random search techniques may appear unsophisti-

cated due to their brute force nature, they are particularly useful in establishing optima of highly

nonlinear and multimodal functions. Since discrete nonlinear optimization problems tend to

add a degree of this type of complexity, it would appear that random search techniques would

prove fruitful.

The number of search points for a pure random search is given by Gottfried as

--1

mh = _-{_ln(1 -Ph) [133]
Fi

The search space is defined by specifying an interval of interest for each of the independent

variables. The main drawback for employing a random search technique in a discrete optimi-

zation problem using penalty functions is the severity of the convergence criteria. Unless the

T_
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random draw is extremely fortuitous, the convergence criteria will not be met, particularly for

sp_lypopulated discrete feasible regions. For this reason, an exhaustive search option is

automatically called in POLYPRIME.FOR when the number of discrete feasible points (as

specified by the search space) is less than the number of search points given by rrg above. On

.... the other hand, if the _h region is dense withdisc_te poin_ as compared with the pres-

pecified number of random search points, then random search proceeds normally.

Hooke and .Ieeves Pattern Search SubtechniaUe
7

The Hooke and Jeeves pattern searchl°'s3 is a more methodical unconstrained search

technique, which requires an initial point, but no variable search intervals. The technique begins

with exploratory moves to establish a base point. These moves are followed by pattern moves

through successive base points. Convergence requirements are more easily met for discrete

problems using this method.

Comvarison of Subtechni0ues

The Hooke and Jeeves pattern search technique is more methodical and generally con-

verges faster than the random/exhaustive search technique. Furthermore, it requires only an

initial point rather than an interval of investigation. On the other hand, the Hooke and Jeeves

method is generally fairly sensitive to the initial search point and is less likely to find global

optima for multimodal functions. Furthermore, although the random/exhaustive _arch tech-

nique may overly res_ct the region of interest for a variable, this condition can easily be

diagnosed when the optimal solution is found at an interval endpoint.
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One excellent approach to combining the two methods' strong points is to use the random

search technique in solving the corresponding continuous optimization problem, and then use

that solution as the initial search point for the Hooke and Jeeves subtcchnique for the discrete

problem. Another interesting study would be to compare the two methods from a time-

effectiveness standpoint.

6.4 Discrete Posynomial Programming Using Dual Methods

Introduction

The use of penalty function techniques with random/exhaustive and Hooke and Jeeves

search subtechniques may provide rapid convergence for discrete posynomial (and signomial)

programs. However, numerical instabilities may occur in the penalty function acceleration

parameters due to ridges in the penalty function. Additionally, global optimal solutions are not

generally achieved, particularly when exhaustive search is not performed. Finally, little ana-

lytical information is gained for sensitivity analysis when numerical methods are applied. The

restrLction to posynomial programs does not lead to any significant advantages over signomial

programs using the primal approach. Indeed, the method is perfectly valid for generalized

polynomials or signomials and general constraints.

In this section, dual methods are applied to discrete posynomial programs. The main

advantages to these approaches are the guarantee of a global optimal solution and the analytic

information gained during the process. The main disadvantages are that some derivation is

required and that many nondegenerate continuous programs result in discrete programs with

high degrees of difficulty.
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General Development and Degree of Difficulty

The prototype discrete primal pro_ is given as

n k

min:=,.,Zc,rIx?

m_ k

xri'.s.t. g_ =_ c a xj < 1, l = 1,2,...,p

m

[134] __
I

[135]

xj = r_n_, j = 1,2,...,q _k [136]

where ci, xj, cu, and rj are positive valued for all i, j, and 1, and nj is a positive integer for all j.

Note that this primal program is quite similar to that given in Section 6.3, with the only difference

being the replacement 0ftheKi's With the value i. Additionally, in the case0f the dual methods,

the positivity restrictions are stricdy adhered to. Recall that the primal method is equally valid

for all real coefficients, general riglit hand side values, and Type I, II, and III constraints.

The f'wst and most obvious fact to note about this problem is that the continuous optimal

objectivefunction value (obtained by not considering the discrete constraints) is always a lower

bound for the discrete objective function value. This is easily seen by contradiction, since, for

any set of nj's established in a discrete optimal solution, the independent variables may always

take the values njrj for any equivalent continuous problem.

The second item to notice is that the discrete equality constraints may always be written

as pairs of prototype posynomial constraints, i.e.

x_ r_n_
--:'< 1 ^--< I [137]
r_n_ x_

Based on this observation, we may establish a first theorem for discrete posynomial program-

filing.
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Theorem 1. Suppose {n_,n 2.... ,nq] are positive integers. Then, provided the dual program

is consistent and the feasible discrete solution space is nonempty, the mixed discrete posynomial

programming solution is globally optimal. Furthermore, the discrete dual program degree of

difficulty is 2q greater than that for the continuous dual program.

Proof:

By the preceding observation, the discrete primal problem can always be formulated as

a prototype posynomial program, which has been shown to be globally optimal (provided

feasibility/consistency relationships hold) under the dual program

s,

maxv(8)- I'I(w) (17(r?j) % 'I(_" _._ cj, "=;r.
,.,k o,/ ) [1381

with

r(,_ , )8,a_-(_-8,,)+ Y| 5". 88a_ =0 h = 1,2 ..... q [139]
ill I=I_jRI

8ia_, + _( _ _,a/a) -0
i=I lal_kj=l

h =q + 1,q +2,...,k [140]

8 i = 1 [141]
itl

g, =i_18_, l= 1,2,...,p [142]

Thus, there are k+p+l equations in n+2q+p+mi+mz+...+rr_ unknowns. The discrete dual degree

DOD = n -k - I+2q + _, mr [143]
111

of difficulty is given by

which is 2q greater than that for the continuous dual problem given by equation [32]. Thus, the

theorem is proved.
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Note that this theorem is not particularly useful without some idea of the nature of the

desired integer values nr The following theorem is useful as an expression for the basic dual

variables.

Theorem 2. For the discrete dual program, the basic dual variables may be written in

terms of the nonbasic dual variables, the nj's, and the nondiscrete primal variables as

t

j=q+l

!

i_tm

[144]

for m=l,2, .... n.

Proof:

The global optimal solution is given at the equality of the arithmetic and geometric means,

i.e. when

k

c, jF[Ix]_ - 8,v(8), i= 1,2,...,n.

This is often referred to as the dual-to-primai transformation. Thus. we may write

[145]

i = 1,2, ...,n [146]

or

m- 1,2,...,n [147]

But
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w

x_ =r_nj, j - 1,2, ...,q =_

"-- k '

j-q+l

[148]

m -" 1, 2,..., n [149]

or

k

j-¢+l

,., J
The desired result follows by substituting

m = 1,2,...,n [150]

i-I

in the exponent. Use of this result combined with the dual linear equality constraints may help

define further avenues of solution.

"Posvseaarable" Programs and Partial Invarianee

In this section, the term "posyseparable" is introduced, followed by techniques which may

simplify the solution of the dual discrete posynomial program, including partial invariance.

Definition: A posynomial function, f, is called "posyseparable" if each of its independent

variables may be isolated at least once, i.e., if it may be written

k x-k k

f -- ,_! c''xi_ + ,_, ci j_-, x;' [152]

where the x_'s, c_,'s, and ci's are positive valued. Note that the term posyseparable, as applied

to posynomials, is less restrictive than the term separable (see separable programming) where

each independent variable is completely isolated in a functional sense from the remaining

d' Ill _
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independent variables. Many posyno_al s displaythe_syseparable property. Although this

property is not a necessary condition for existence or uniqueness of global optimal solutions for

discrete posynomial programs, it does allow for a straightforward dual-to-primal variable

conversion, Which is often a major drawback to using dual meth_.

i Theorem 3. If the objective function in a consistent and feasible discrete posynomial

program is posyseparable, then the basic dual variables may be written in terms of any of the q

discrete variables as

[153]

where
: =:

-'&a-Bib = ahS_, +,=_l ao,8, + _ 8_a m ,
,.. " 1=1_}-1

h = 1,2,...,q [154]

Proof: The dual program is
=

maxv(8) _,_t.8,) _:_t.8_ .: .
[155]

81ah +,_t 8ia_i--(Sih--Sxh)+ X 8j, am =0 h = 1,2,...,q
• t,i\j=l /

8_,al, 8iao,+ _ 8_,am =0 h=q+l,q+2,...,k
i=l l=l_,j=l

[156]

[157]

k A-k

x,,5,=li=l i
[158]
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Since f is posyseparable,

Also,

Thel_for_,

But

or

Therefore,

Since

.--, .-

P'l i=_18/" I 1,2,...,p

c,,,,x_ = 5,,,v(5), m = 1,2, ...,k

xj = r_nj, j = l,2, .... q

8_C¢_ a
X2-._ X ¢

_¢aC_ q

(, ,8. c_o,

i.., ) i-_k ¢ ) t,j=l /

It/ •

"(lel('='U"'_ 8/ (lJ (_))), m = 1,2,...,k

Xq -_ rqPlq
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( c %-' , ( c.'_".-,(c, J_(r'n')_ __ _.'

ii I , I

__18 fl ll-t llr

•:.,:,:<r,,,>''._,Ot_I- _ - <._,<7>,,>'-.:,'-,:,<,... m = 1,2,...,k [167]

But

1

=r',c-<_,._..yr_nj t 8_c_
=, [1681

/ xs,.-1 ' (c. hs..__(c, _8,

_-::-'{_J,:Q:.t_J,_,t_J<"'>_'"-"

'
im'i " lit

z 8. ,_,._i,,_I,-1(8..___ ._., ., 8) _,_,,
v 2 O 4.8)

[169]

For

m _. q - 1 [170]

wc may rewrite

s-ll k

8. = 1- Z 8,- Z 8_, [171]
i-I i-I

and the theorem is proved. Combining this result with the linear dual equations allows one to

use partial invaxiancc to solve for basic dual variablcs in terms of at most one nj. Then, a series

of differences in terms of the discrete and continuous dual objective functions may bc minimized
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w

w

vd(5 ) - vc(8 ) : _- v_(8) [172]

Setting this difference to zero, we may write

8.c,, o.
c_ - 5_,,v_(8) = --_-(rqn,) - 5,,,v¢(5) [173]

=8_,(_(rqnq)"-v_(8)) [174]

which is a function of nq and the dual variables only. In general, partial invariance should be

used to solve the basic dual variables in terms of the dominant dual variables if one has that

knowledge for the problem at hand. A good starting point is to solve for the dual variables

corresponding to the discrete (primal) constraints in terms of the basic dual variables evaluated

in the neighborhood of their optimal continuous solutions.

A fair amount of derivation has indicated possible directions a dual approach may take

in a discrete posynomial program. The concept of posyseparability has been introduced to ease

the dual-to-primal transformation. The discrete dual program has been shown to have a degree

of difficulty 2q greater than the corresponding continuous dual program. A number of relatively

simple examples have been used to illustrate various facets of the dual approach. Primal and

dual approaches have been compared. Specific numerical and computer methods used to support

the dual approach axe left for future development.

Figures 6.4-1, 2, and 3 show the optimal discrete design values of minimum system mass

per unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall

separation, and projectile velocity, respectively, for the Nysmith predictor. The discrete

availability factor, r_, is 1/64 inches. Figure 6.4.1 reflects a constant meteoroid density. In

Figure 6.4-3, the impact angle remains constant at 0 degrees (normal).
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Figure 6.4-1. Optimal Discrete Design Value vs Projectile Diameter for Nysmith

Predictor
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Figure 6.4-2. Optimal Discrete Design Value vs Bumper/Wan Separation for Nysmith

Predictor
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Figure 6.4-3. Optimal Discrete Design Value vs Projectile Velocity for Nysmith

Predictor

Figure 6.4-4 shows the sensitivity of minimum system mass per unit area to bumper

thickness availability factor, r,. The discrete and continuous objective functions are equal when

the continuous bumper thickness is an integer multiple of the bumper thickness availability

factor as shown in Figure 6.4-5. This occurs at numerous locations over the range considered.

Note that when r_ is small, the discrete bumper thickness is closer in value to the continuous

bumper thickness. As r_grows, this incidence of equality naturally decreases while the deviations

from the continuous minimum mass per unit area grow in value. Beyond the optimal continuous

value of the bumper thickness, the objective function continues to grow indefinitely, because

the availability factor is dominating the desired continuous solution.

r_

An Employ_m_ Company

=

i

ii

il

I

m

II

tl

II

i

g ;

m
li

m
I Z

==

w

li

W



= ,

III

w

w

w

m_

L

_. o.63 Nysmith Predictor
Meteoroid Example

0.82 ..............................S_--_'_'_i_..........................................................-"/ ........

O = 0.84 cm /-_'

0.61 ........... ".......

_ 0.6 ..........................................................................................................................

_ 0.59

IE_ 0.58 ............ - -- . -M-I ........

C

0.57 I r l I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Bumper Thickness Availability Factor (in.)

Discrete Continuous

Figure 6.4-4. Minimum Total System Mass Per Unit Area vs Bumper Thickness

Availability Factor for the Nysmith Predictor
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• ..... • .....

Figure 6.4-5. Optimal Bumper Thickness vs Bumper Thickness Availability Factor for

the Nysmith Predictor

Figures 6.4-6, 7, and 8 show the optimal discrete design values of minimum system mass

per unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall

separation, and projectile velocity, respectively, for the Butch predictor. The bumper thickness

availability factor is 1/64 in. Figure 6.4-6 reflects a constant projectile density as given in

equation [ 141]. In Figure 6.4-8, the impact angle remains constant at 0 degrees (normal).
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Figure 6.4-6. Optimal Discrete Design Value vs Projectile

Diameter for Burch Predictor
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Figure 6.4-7. Optimal Discrete Design Value vs Bumper/Wall Separation for Burch

Predictor
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Figure 6.4-8. Optimal Discrete Design Value vs Projectile

Velocity for Burch Predictor

Figure 6.4-9 shows the sensitivity of minimum system mass per unit area to bumper

thickness availability factor, rl. The discrete and continuous objective functions are equal when

the continuous bumper thickness is an integer multiple of the bumper thickness availability

factor as shown in Figure 6.4-10. This occurs at numerous locations over the range considered.

Note that when rl is small, the discrete bumper thickness is closer in value to the continuous

bumper thickness. As r_grows, this incidence of equality naturally decreases while the deviations

from the continuous minimum mass per unit area grow in value. Beyond the optimal continuous

value of the bumper thickness, the objective function continues to grow indefinitely, because

the availability factor is dominating the desired continuous solution.
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Figure 6.4-9. Minimum System Mass Per Unit Area vs. Bumper Thickness

Availability Factor for the Burch Predictor
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Figure 6.4-10. Optimal Discrete and Continuous Bumper Thickness vs Bumper

Thickness Availability Factor for the Burch Predictor

The discrete Wilkinson predictor optimization algorithm is derived using the dual method.

Theorem 4. The combined discrete/continuous WiUdnson algorithm is given by

0.364D'p2Vcos(0) [175]
1. c,= /._2p,

1.207D2pp

2. Wo= "7 _V_(0)f 12

(cos _
[176]

w=
4. IfDPn>I, n/= [ 2--_irl],z [178]P:h,
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3. t,= = 2p---:', t2= =_2 [177]
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Otherwise, go to step 10.

5. tto = rln t

t

6. St=

Pltlo W0 -- pit h

Wo=W,

8. If Dpt' > 1, quit.
Pttlo

If h = h n2 is required, then the optimal discrete values are given by

tt,, Wo : Pl4, + P2t20, quit.
L ,'2 .z'

9. Dp,

--g 1 =_ t2e-_,
path

=..

If ta = 1"2n2 is required, the optimal discrete solution is given by

,,., S+o.5] ,
L r2 J,J.

Wo : P14, + P2_.

quit.

10.
Dp, t_

Wo_ - p,t,.+ p2t_.

0.440D I V c_(O) ]irz 0.132D2V cos(0)11. If S + l'aS 2 <1.092,

and return to step 5. Otherwise,

[179]

[18o]

[181]

[182]
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w

w

2plrl J.z

Check both values and return to step 5.

Proof: The primal objective function is given by

Cl

W = plt_ + P2t2 = pit1 +--
t,

and is constrained by h = 1"!n_. The dual program is given by

s.t. _ +8_= I

( )'-',___<,(p,'_ c, _-,

=} maxv(8)= { _'l J (rinl)

s.t. 8t E [0,I]

But

[189]

[190]

[191]

[192]

[193]

[194]

[195]

w
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But this gives

tl= rlnI^ v(8)-

i

Pirtni (Or c_ -

[196]
U

w

:_,rr,_,l'-'ro,/'-':"

[197] i

|i-I

[198]

w

i

E

=_plr_n_(1-81)=c,51

[199]

[200i ill

[201]

[202]

plrllnli
81= [203]

cl + pir_n_

Now, minimizing the difference between the discrete and continuous dual objective functions

rainy(8)- W(i pirln, - u: [204]

for Wilkinson gives

At zero this minimum gives

p_r_nf c_ + p_r_n_ ]
p_r_n-----_) -W°_t

[205]
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w

w

c, + plr_n_ = r,n IWo_

=_ ptr_n_-rln,Woc + c, =0

w_ + (w_ - 4c,pl) _
=_ nl = 2p,rl

In order for the radical to exist, we must have

and the roots are identical. For

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[2141
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Dpp
< I, [215]

plt_

t_

Wo = Patio+ P2_ [216]

s ,= -# _ ) L S--_p " -- [217]

...,,_=o.3_wp_Vcos(o)o._3:_'p_:oos'(O)o.44o__'p;(vc:)y_
/-aS 2 + /._S' 4 S 3 [, /,2 ) [2191

and

Wo2 _>4c, p_ =_ [220]

1.092D'p_Vcos(O) 0.132D'p_V2cos2(O) 0.440DSp_(Vcos(0)'_t-s

L.2S' < /._S' "_ S 3 [, /-,2 ) [221]

D4p_Vcos(O)(

=* _ [1.092

cos,o,,o, oo= 1.092 _ -_ --

[222]

[2231

and the main result is proved. Note that the justification for using nearest integer is the parabolic

form of the quadratic equation

r 2 2f(nt) = Pl t nt - rlWo_nl + ct = O, W_ = 4ctp I [224]

This may be transformed to

[225]
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Figures 6.4-11, 12, and 13 show the optimal discrete design values of minimum system

mass per unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall

separation, and projectile velocity, respectively, for the Wilkinson predictor. In Figure 6.4-11,

the projectile density varies with diameter according to equations [13] and [14]. In Figure

6.4-13, the impact angle remains constant at 0 degrees (nom3al). The optimal bumper and wall

thicknesses for the Wilkinson predictor are approximately equal due to the similarity in bumper

and wall material densities.

0 0.5 1 1.5 2

Projectile Diameter (cm)

Optimal Discrete Bumper Optimal Wall Minimum System Mass
Thickness (cm) Thickness (cm) Per Unit Area (gm/cm2)

• ..... • ..... i

2.5

Figure 6.4-11. Optimal Discrete Design Value vs Projectile

Diameter for Wilkinson Predictor

L
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w

r

0

0
• .... _' "_==_=" _'=_ ...... -'_ ==_'l_l ..... m .... 4_a

Optimal Discrete Bumper

Thickness(cm)

I I I I I I I

2 4 6 8 10 12 14

Projectile Velocity (km/sec)

Optimal Wall Minimum System Mass

Thickness (cm) Per Unit Area (gm/cm2)
..... • ....

16

Figure 6.4-13. Optimal Discrete Design Value vs Projectile

Velocity for Wilkinson Predictor

Figure 6.4-14 shows the sensitivity of minimum system mass per unit area to bumper

thickness availability factor, r,. The discrete and continuous objective functions are equal when

the continuous bumper thickness is an integer multiple of the bumper thickness availability

factor as shown in Figure 6.4-15. This occurs at numerous locations over the range considered.

Note that when r, is small, the discrcm bumper thickness is closer in value to the continuous

bumper thickness. As r, grows, this incidence of equality naturally decreases while the deviations

from the continuous minimum mass per unit area grow in value. Beyond the optimal continuous

value of the bumper thickness, the objective function continues to grow indefinitely, because

the availability factor is dominating the desired continuous solution.

w
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Thickness Availability Factor for the Wilkinson Predictor

6.5 Conclusions and Recommendations for Section 6

C_encludam

In conclusion, global (and sometimes analytic) optimization of discrete posynomial

programs can be performed using dual approaches coupled with partial invariance techniques.

However, primal methods require less "pencil and paper" effort than dual methods and are more

easily applied to most problems. Primal methods do not generally obtain global solutions for

the discrete posynomial program. Furthermore, the dual method may be advantageous in cases

where the objective function may be sufficiently separable, since posyseparable programs do

not require solutions of coupled nonlinear equations in the dual-to-primal variable transfor-
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marion. For protective structures design optimization problems, global nonlinear design opti-

mization can be performed for the Wi_nson, Butch, and Nysmith impact predictors. In these

eases, the optimal ratio of bumper mass per unit area to total mass per unit area may vary with

mission, environment, projectile mass, and velocity regime. Additionally, there is a large

incentive for increasing the bumper/wall separation from 10 to 15 cm for all three predictors

investigated. All three predictors reflect increasing design sensitivity to projectile diameter and

decreasing design sensitivity to bumper/wall separation. However, the Wilkinson and Nysmith

predictors reflect increasing design sensitivity to projectile velocity, while the Burch relationship

is decreasing.

Recomulendations _

It is recommended that other pri_i methods be investigated, including penalty functions
.... s .........

supported by derivative search-mLe_ods and feasible direction developments for discrete

POsynomial programs. Additionally, computer algorithms should be implemented based on

current dual codes and modifications to the discrete problem. The dual method should also be

extended to signomials. In the area of spacecraft protective structures design optimization, other

hypervelocity impact predictors should be investigated. The discrete methods developed in this

study should also be applied to other structural design problems. Finally, alternate protective

materials and configurations should be investigated.
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7 HYPERVELOCITY IMPACT TEST SAMPLE DAMAGE ASSESSMENTS

Hypervelocity impact test sample damage assessments were performed by UAH. Posynomial

regression analysis was performed by SAIC, and is available in Discrete Posvnomial Program-

min_ With A n_lications To Spacecraft Protective Structures DesiL_n Optimization, by R. A.

Mog.

The purpose of this effort is to show a posynomial regression analysis of existing hypervelocity

impact test data, followed by the global optimization of the ensuing structural design problem

incorporating the predictor. A posynomial (polynomial with positive coefficients and positive-

valued independent variables, but not necessarily positive exponents) form is chosen for several

reasons:

1. Posynomials can be globally optimized using the nonlinear geometric programming technique.

2. Many previously developed predictors (by Nysmith, Madden, Wilkinson, Richardson, etc.) are

of posynomial form.

3. Posynomial regression problems may, under certain circumstances, be solved using linear

regression techniques, which are easier to solve and measure statistically.

This effort focuses on the question of whether posynomial regression can be performed in a

statistically significant manner. A secondary goal of the study is to provide global optimization of

the design problem formulated using the derived posynomial predictor.

The development and analysis of a posynomial hypervelocity impact predictor suitable for

the design of protective structures for spacecraft exposed to the meteoroid and space debris environs

is presented in the reference above. The posynomial form is fhst developed with a number of

estimated parameters. This model is next transformed into a linear regression model. Regression

analysis is performed using a least squares approach to estimate the parameters, followed by analysis

of variance, F-tests, and correlation coefficient examination. Residual values are then plotted against
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the predicted and variable values. Next, the model is transformed into a hypervelocity impact

penetration predictor suitable for design. Finally, the design problem is formulated and globally

optimized using posynomial programming. Results show that statistically significant posynomial

impact predictors can be developed using linear regression approaches.

The main conclusion of this effort is that it is possible to develop a statistically significant

posynomial hypervelocity impact predictor with a fairly large number of impact tests and a fairly

small number of predictor variables. Although greater variation can be explained by considering

posynomials with more than one term, the ability to transform the posynomial into a form suitable

for linear regression is lost. Furthermore, since it is generally desirable to have 10 or more data

points per predictor variable, the increased number of term values might actually decrease the

confidence in the predictive capability of the model as measured by the analysis of variance.
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8 ANALYSIS OF PROJECTILE SHAPE EFFECTS

SAIC developed posynomial regression techniques and combined them with posynomiai

optimization techniques for application to this area. These techniques are available for immediate

application to the test data resulting from projectile shape effects testing. Currently, limited test

data produces unclear results when attempts are made to correlate data from various projectile

shapes. Results are inconclusive. Further investigation of the projectile shape effects could include

methodologies found in sources such as "A Preliminary Investigation of Projectile Shape Effects

In Hypervel_ty Impact of a Double-Sheet Structure," by R. H. Morrison, NASA-TN-6944, August

1972, but will remain inconclusive until further test are performed.
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10 APPENDICES

APPENDIX A. POLYPRIME.FOR:

A GENERALIZED PRIMAL OPTIMIZATION TECHNIQUE USING PENALTY

FUNCTIONS

DIMENSION C(100),A(100,100),X(100),M(100),CI(100,100)
DIMENSION AI(100,100,100),XKL(100),XHIGH(100),XLOW(100)
DIMENSION RJ(100),IDIS (I 00),XOPT(100),XEXP(100)
DIMENSION EPS I(100),EPS2(100)

OPEN(UNIT=I0,TYPE='OLD',ACCESS='SEQUENTIAL')
OPEN(UNIT= I I ,TYPE= 'NEW' ,ACCES S= 'SEQUENTIAL' )

***INITIAL SEED FOR RANDOM SEARCH***
ISEED ---91411

***NUMBER OF CASES TO RUN***

READ(10,*) NRUNS
DO I0 IR=I,NRUNS

***IOPT=I FOR RANDOM SEARCH, 2 FOR HOOKE AND JEEVES***

READ(10,*)IOPT
***NUMBER OF TERMS IN OBJECTIVE FUNCTION***

READ(10,*)N
***NUMBER OF INDEPENDENT VARIABLES***

READ(10,*)K
***NUMBER OF CONSTRAINTS***

READ(10,*)P
DO 15 I= 1,N

***COEFFICIENT FOR EACH TERM IN OBJECTIVE FUNCTION***

READ(10,*)C(I)
DO 20 J= 1,K

***EXt_NENT FOR OBJ. FUNC. BY VARIABLE AND TERM***

READ(10,*)A(I,J)
20 CONTINUE

15 CONTINUE

DO 25 L=I,P
***NUMBER OF TERMS BY CONSTRAINT NUMBER***

READ(10,*)M(L)
***RIGHT-HAND-SIDE BY CONSTRAINT NUMBER***

READ(10,*)XKL(L)
DO 30 I=I,M(L)

***COEFFICIENT BY TERM AND CONSTRAINT NUMBER***

READ(10,*)CI(I,L)
DO 35 J= I,K

***EXI_NENT BY TERM, VARIABLE, AND CONSTRAINT NUMBER***

READ(10,*)AI(I,J,L)
35 CONTINUE

30 CONTINUE
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25 CONTINUE

DO 36 I-1,K ..........
***IDIS = 1 FOR DISCRETE VARIABLES***

READ(10,*)IDISf0
IF(IDIS(I).EQ. 1) THEN

***DISCRETE FACTOR BY VARIABLE*** : _ : i : : :

READ(10,*)RJ(I)
ENDIF

36 CONTINUE
***INITIAL PENALTY FUNL'TION ACCELERATION FACTOR***

ACCEL -- 1.0

***RANDOM SEARCH*** = . : .............

CALL RSEARCH(IDIS,ISEED,N,K,P,C,A,M,XKL,CI,AI,RJ,ACCEL,X)
GO TO I000 . _

IF(IOPT.EQ.2)_N
***HOOKE A_ JEEVES***

CALL HJ(IDIS,N,K,P,C,A,M,XKL,CI,AI,RJ,ACCEL,X)
ENDIF

1000 CONTINUE
10 CONTINUE

STOP _- : : - ....
END

SUBROUTINE RSEARCH(IDIS,ISEED,N,K,P,C,A,M,XKL,CI,AI,RJ,ACCEL,X) ....
DIMENSION C(100),A(i00,i00),X(100),M(100),CI(I_, 100) .....
DIMENSION AI(100,i 00,100),XKL(100)_GH(100),XLOW(100)
DIMENSION R J(100),IDIS (100),XOPT(100),XEXP(100)
DllVlENSION EPS 1(100),EPS 2(100),MULT(100)

***FRAt.'I'ION OF INTERVAL REQUIRED AND CON_ENCE LEVEL***

READ(10,*)FRS3(PRS
***NUMBER OF SEARCH POINTS*** ..........

NPO_S = IFFX(- i .O*_OG( i ,O'_R$)/_S * *K) + 1.0)
WRITE(6,*)'YOU WILL BE SEARCHING',NPOINTS,'POINTS'
DO 40 I=I,K

***LOWER AND UPPER BOUNDS BY VARIABLE***

READ(10,*)XLOWfl),XHIGH(I)
40 CONTINUE
***INITIALIZING NUMBER OF DISCRETE POINTS AND VARIABLES***

DPOINTS=I.0
NDVAR=0

DO 41 I=I,K
IFflDIS(i).EQ. 1)THEN .......................

NDVAR=NDVAR+I

***CALCULATES TOTAL NUMBER OF FEASIBLE DISCRETE POINTS IN INTERVAL***
DPOINTS-(XHIGH(I)-XLDW(I))/RJ(I)*DPOINTS

ENDIF
41 CONTINUE
***IF THE PROBLEM ISNT MIXED***
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105 IF(NDVAR.EQ.K)THEN
***IF THE INTERVAL IS NOT DENSE IN DISCRETE FEASIBLE POINTS RELATIVE TO***
***THE NUMBER YOU WERE WILLING TO SEARCH ANYWAY, JUST SEARCH FEASI-

BLE POINTS***

IF(DPOINTS.LE.NPOINTS)THEN
DO 42 I-1,K

MULT(I)-IFIX(XI.,OW(1)/RJ(I))+ 1
***LOWEST DISCRETE FEASIBLE POINT***

X(D=MULT(I)*R.!(I)
42 CONTINUE

ICOUNT--0

DO 44 J= 1,K
***CONTINUE AS LONG AS DISCRETE POINTS ARE FEASIBLE***

47 IF(X(J).LE.XHIGH(J))THEN
CALL OBJ(IDIS,C,A,X,CI,AI,XKL,N,K,P,M,RJ,FUNC,ACCEL,XPF)

IF(ICOUNT.EQ.0)THEN
***INITIALIZE OFHMAL VALUES***

FUNCOPT=FUNC

XPFOPT=XPF

DO 43 I=I,K

XOPTO3=X(D
43 CONTINUE

ENDIF
ICOUNT-ICOUNT+I

IF(FUNC.LT.FUNCOPT)THEN
***UPDATE OPTIMAL VALUES***

FUNCOPT=FUNC

XPFOPT=XPF
DO 46 L=I,K
XOPTO )=X(L)

46 CONTINUE
ENDIF

***INCREMENT DISCRETE SEARCH POINTS***

MULT(J)=MULT(J)+I
X(J)=MULT(J)*RJ(J)
GO TO 47

ENDIF
***UPDATE OPTIMAL VALUES***

DO 48 I=I,K
X(D=XOPT(1)

48 CONTINUE
44 CONTINUE

*** WR1TE(6,*)FUNCOPT,XPFOPT,(XOPT(I),I= 1,K)
GO TO 99
ENDIF
ENDIF

***IF THE PROBLEM IS MIXED OR CONTINUOUS OR FULLY DISCRETE WITH A DENSE
***COVERING OF FEASIBLE POINTS IN THE INTERVAL, PROCEED WITH STANDARD

RANDOM
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***SEARCH***
DO4Si_i,NPOINTS _ :::_=_*-_--_÷ _:_ _:-!__: _ : _ , _

DO 50 J=I,K
***CALCULATE RANDOM SEARCH POINT***

X(J)=XLOW(J)+RAN(ISEED)*(XHIGH(J)-XLOW(.I)) : ....... _ .....
50 CONTINIm

CALL OBJODiS,C,A,X,CI,AI,XKL,N,K,P,M, RJ,FUNC,ACCEL,XPF)
IF(I.EQ. 1)THEN ...........

***INITIALIZE OPTIMAL VALUES***
_COFr=_C
XPFOPT=XPF

g_ L=i,K
XOPT(L)=X(L)

85 CONTINUE

_C'LT.FtmCO_
***UPDATE OPTIMAL VALUES***

FLrNCOPT=FUNC
XPFOPT=XPF
DO 90 L=I,K

XOPT(L)=XCL)
90 co__

ENDIF
*** wRrrE(6,*)XPFOPT
,15 CO_ .....
***DOES PENALTY CONVERGE?***

99 IF(XPFOPT.LE.0.001)THEN
wRrrE(11,*)'MIN. OBJ. FUNC. VALUE =',FUNCOPT
DO 95 L=i,K _ :
wRrrE(11,*)'X',L,'=',XOPT(L)

95 CONTINUE _ _
GO TO I00

ENDS=
***UPDATE PENALTY FUNCTION ACCELERATING FACTOR IF PENALTY DOESNT
***CONVERGE*** _

ACCEL=ACCEL* 10.0
GO TO 105

I00 CONTINUE
RETURN ....
END
SUBROUTINE HJODIS,N_K,P,C_,M,XKL,CI,AI, RJ,ACCEL,X)
DIMENSION C(100),A(100,100),X(100),M(100),CI(100,100)
DIMENSION hi(100,100,100),XKL(100),XHIGH(100),XLOW(100)
DIMENSION PJ(100),IDIS(100),XOPT(100),XEXP(100)
DIMENSION EPS I(100),EPS2(100)
IDI_--0
DO II0 I=I,K

***READ INITIAL POINT, INITIAL EXPLORATORY VALUES, AND FINAL EXPLOR-
ATORY
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***VALUES***

READ(10,*)X(D,EPS I(I),EPS2(D
XOPT(I)=X(I)

110 CONTINUE

CALL OBJ(IDIS,C,A,X,CI,AI,XKL,N,K,P,M,RJ,FUNC,ACCEL,XPF)
*** WRITE(11,*)'I',FUNC
***IN1TIALIT_- OPTIMAL VALUES***

FUNCOPT=FUNC
XPFOPTfXPF

*** WRITE(11,*)FUNCOPT_fPFOPT
DO 115 I-1,K

***PERFORM EXPLORATORY SEARCH _OM BASE POINT***

XEXP(I)=X(I)
X(D=X(i)+EPS 1(I)
CALL OBJ(IDIS,C,A,X,CI,AI,XKL,N,K,P,M,RJ,FUNC,ACCEL,XPF)

*** WRH_(11,*)'2',FUNC
IF(FUNC.GT.FUNCOPT)THEN

***GO IN OTHER DIRECTION***

X(I)-X(I)-2.0*EPS 1(I)
*** DO 1134 KLM=I,K
*** WRITE(11,*)'KLM=',KLM,X(KLM)
*** 1134 CONTINUE

CALL OBJ(IDIS,C,A,X,CI,AI,XKL,N,K,P,M,RJ,FUNC,ACCEL,XPF)

*** WR1TE(11,*)'3',FUNC
IF(FUNC.LT.FUNCOPT)THEN

***UPDATE OPTIMAL VALUES***
FUNCOPT=FUNC

XOPTCDfX(D
XPFOPT=XPF
IDIFF-1

*** DO 1125/IK=I,K
*** WRITE(11,*)' 111 '.FUNCOPT.XOPT(TIK),XPFOPT
*** 1125 CONTINUE

GOTO 111
ENDIF

GOTO 111
ENDIF

***UPDATE OPTIMAL VALUES***

XOPT(I)fX(I)
XPFOPT=XPF
FUNCOPT=FUNC

IDIFF=I

DO 1126/IK=I,K

WRITE(II,*)'115'/_JNCOPT.XOPT(nK),XPFOPT
*** 1126 CONTINUE
111 CONTINUE
115 CONTINUE

135 IF(IDIFF.EQ. 1)THEN
DO 120 I=I,K
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***IF NEW POINT IN EXPLORATION IS DIbFERENT FROM BASE POINT, PERFORM
***PATrERN SEARCH***

 0)---XEXP +2.0*(XOPT(I)-XEXPf0)
X(D=xExPg)

120 CONTINUE

***OTHERWISE, REDUCE EXPLORATORY VALUES (EPSILONS)***

IF(IDIFF.EQ.0)THEN
GO TO 140

ENDIF
IDIFF=0

CALL OBJODIS,C,A,X,CI,AI,XKL,N,K,P,M,RJ,FUNC,ACCEL,XPF)
*** WRITE(11,*)'4',FUNC : .....::' "

IF(FUNC.LT.FUNCOPT)THEN
***UPDATE OPTIMAL VALUES***

FUNCOPT=FUNC ,:÷.... - : ,,
XPFOPT-XPF

DO 12! I=I,K
XO =Xf0

*** DO 1127 JIK=I,K

*** WRITE(I I,*)'121',FUNCOPT,XOPT(JIK),XPFOPT
*** 1127 CONTINUE
121 CO_

175 DO 125 I=I,K

***PERFORM (NEW) EXPLORATION***
X_=X(T)+EPS I(I) ........ - :
CALL OBJODIS,C,A,X,CI,AI,XKL,N,K,P,M,RJ,FUNC,ACCEL,XPID

*** WRITE(I 1,*)'5',FUNC
IF(FUNC.GT.FUNCOPT)THEN

***GO IN OTHER DIRECTION***

X(1)-X(I)-2.0*EPS 1(I)
*** DO 1136 KLM=I,K
*** WR1TE(11,*)'KLM-',KLM,X(KLM)
*** 1136 CONTINUE

CALL OBI(IDIS,C,A,X,CI,AI,XKL,N,K,P,M,RJ,FUNC,ACCEL,XPF)
*** WRrl-£(l I,,),6,_C

IF(FUNC.LE.FUNCOPT)THEN
***UPDATE OPTIMAL VALUES***

FUNCOPT=FUNC

XOPTfl)=Xfl)
XPFOPT=XPF

*** DO 1128 JIK=I,K
*** WRITE( 11,*)' 175 ',FUNCOPT,XOPT(JIK),XPFOPT
*** 1128 CONTINUE

IDIFF=I
ENDIF
GO TO 125

ENDIF
***UPDATE OPTIMAL VALUES***
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XOPT(1)=X(1)
IDIFF=I

FUNCOPT=FUNC

XPFOPT=XPF

*** DO 1129 HK=I,K

*** WRITE(11,*)' 140',FUNCOPT,XOPT(HK),XPFOPT
*** 1129 CONTINUE
125 CONTINUE

140 IF(IDIFF.EQ.0)THEN
DO 130 I=I,K

***REDUCE EXPLORATORY VALUES WHEN NO IMPROVEMENT IS MADE IN
EXPLORATION***

EPS I(I)=EPS l(I)/2.0

IFCEPS 1 (I).LT.EPS2(I))THEN
***CHECK ENDING CONDITION BASED ON EXPLORATORY VALUES***

GO TO 150
ENDIF

130 CONTINUE

***GO EXPLORE SOME MORE***
GO TO 175

ENDIF
ENDIF

DO 137 KIM=I,K
***RETAIN PREVIOUS BASE POINTS FOR FUTURE PATI'ERN MOVES***

X(K_)=XOPT(KIM)
I37 CONTINUE

IF(IDmF.EQ.0)THEN
GO TO 140

ENDIF

***MAKE PATrERN MOVE***
GO TO 135

150 CONTINUE

***CHECK PENALTY VALUE FOR CONVERGENCE***

IF(XPFOPT.LE.0.00 I)THEN

DO 1130 JIK=I,K

WRITE(11,*)'MIN. OBJ. FUNC. VALUE =',FUNCOPT
WRITE(11,*)'PENALTY = ',XPFOPT
WRITE(11 ,*)'ACCELERATION FACTOR = ',ACCEL

1130 CONTINUE
DO 170 L=I,K

WRITE(I I,*)'X',L,'=',XOPTCL)
170 CONTINUE

GO TO 200

ENDIF

***UPDATE PENALTY FUNCTION ACCELERATION FACTOR IF CONVERGENCE IS NOT
***ACHIEVED***

ACCEL=ACCEL* 10.0
GO TO 1 I0

200 CONTINUE
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RETURN
END ........... :

SUBROUTINE OB3 (IDIS,C,A,X,CI,AI,XKL,N,K_,M, RJ,FUNC,ACCEL,XPF)
DIMENSION C(100),A(100,100),X(100),M(100),CI(100, I00)

DIMENSION AI(100, I00,100),XKL(100),XHIGH(100),XLOW(100)
DIMENSION RJ(i 00),IDIS(I00),XOPT(100),XEXP(I00)

DIMENSION EPS 1(100),EPS2(100)
FUNC--0.0
DO 55 IJ=I,N

***INITIALIZE PRODUCT VALI_S***

XPROD=L0 .....................

DO 60 IffK= 1 ,K _. : ......
****** WRiTE(6,*)X(_) ,A(IJ, IJK)
***ZERO EXPONENTS GIVE PRODUCT VALUES OF 1.0"**

IF(ABS(A(IJMK)).LE.0._I)THEN _ _ :_-_ _ . _ _ :
GO TO 6O

ENDIF

***ZERO VARIA.BLEVALUES GIVE PRODUCT VALUES OF ZERO**' ....

IF(ABS(X(IJK)).LE:0.000000 I)THEN

XPROD=0.0

GO TO 60
ENDIF

***COMP_RS DO_ RAISE NEG. VALUES TO EXPONENTS*** _

IF(X(IJK).LT.0.0)THEN
X(I;K)=ABS(X(Im))

ENDIF ......._ '

***COMPUTE PRODUCT VALUES FOR OBJ. FUNCTION***

XPROD=XPROD*X(I/K)**A(LI,IJK)
6O CO_
***COMPUTE ORIGIN_ OBJECTIVE FUNCTION VALUE***

FUNC=FUNC+C(IJ)*XPROD
55 CONTINUE

XPF=0.0 "
DO 65 IJ= 1,P

***INITIALIZE CONSTRAINT SUMS***
CONSUM=0.0 _ _ _ ,

DO 70 LI=I,M(I/)

***_IZE CONSTRAINT PRODUCTS***

CONPROD=I.0

DO 75 MJ=I,K
***UPDATE CONSTRAINT PRODUCTS* **

CONPROD--CONPROD X(MJ) AI(LJ,MJ,LO
75 CON_

*** UPDATE CON STRAINT SUM S***

CONSUM=CONSUM+CI(IJ,IJ)*CONPROD
70 CONTINUE .......

***COMPUTE PENALTY AND FUNCTION FOR <= CONSTRAINTS***

IF((CONSUM-XKL(LI)).GT.0.0)THEN ....
XPF=XPF+A_'_CEL *(CONSUM-X_)**2.0 -

@
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FUNC=FUNC+XPF
ENDIF

65 CONTINUE

DO 80 IJ= 1,K
***COMPUTE PENALTY AND FUNCTION FOR DISCRETE CONSTRAINTS***

IF(IDIS(IJ).EQ. I)THEN
XPF1-ACCEL* (ABS (X(IJ)/RJ(IJ)-IFIX(X(IJ)/RJ(IJ)+0.5)))**0.5
XPF=XPF+XPF1
FUNC=FUNC+XPF1

ENDIF
80 CONTINUE

RETURN
END

v

E
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APPENDIX B. IMPACTI0 SOURCE CODE LISTING

D_N$iON XPV(100), SOLAR(1188), XPSIV(125), XMETIV(100)
DIMENSION XDEBOLDIV(100)
DIMENSION IswrrcH(10)

character BUMPER_NA_0)*I4,WALL_NAME(50_)*!!_ _ i i _ i
CHARACTER BUMPER_MAT_NAME*40, WALL_MAT_NAME*40
CHARACTER BUMPER_TYPE_NAME*40,WALL_TYPE_NAME*40
CHARACTER SHAPE*40
character Outdir*40
character linel*80
character line2*80

data cdate / 'Run_Date '/
data crime / 'Run_Time '/

call getrim (ihr,imin, isee, il00th)

call getdat (iyr, imon, iday) ...... , , ,
OPEN(UNIT=27,STATUS-- old ,ACCESS= SEQUENTIAL',

+ FILE='config.pgm')
read(27,2312)outdir

read(27,2312)outdir
2312 format(A40)

close(27)
OPEN(UNIT=23,STATUS='OLD',ACCES S=' SEQUENTIAL',FILE='_.INP')
OPEN(UNIT=26,STATUS='OLD',ACCESS =' SEQUENTIAL',FILE='GEOMETRY.INP')
trK= rNDEX(OtYrDm,' '),!
OPEN(UNIT--27,STATUS='unknown',ACCESS='SEQUENTIAL',
+ FILE= ou_i:_)//'Z9AAAAAJ.I_M')

OPENCUNIT=28,STATUS=' unknown' ,ACCESS= 'SEQUENTIAL',
+ FILE='PROJECT.OUT')
OPEN(UNIT--29,STATUS='unknown',ACCESS='SEQUENTIAL',

+ FILE='results.dat')

open(unit-33,stams='old',access='sequentiat',
+ file='project.hdr')

write(28, '(Ix, A10,1x, 12.2, 1H:, 12.2, 1H:, I2.2, 1H.,

+I2.2)') crime, ihr, imin, isee, il00th
write(28, '(Ix, Ai0,1x, 12.2, 1H-, I2.2, 1H-, I4.2)')

+ cdate, imon, iday, iyr
do 6008 i = 1,6

read(33,6007)line 1
write(28,6007)line 1

6008 continue
close(unit=33)

write(*,*)' IMPACT10V -- SAIC / Huntsville'

write(*,*)' ............................... '
write(*,*)
write(*,*)'Status - Initializing Files'
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.mw----_D_uu .... ..w. .... . ..... ----

C READ Static Data Files
C

OPEN(UNIT=I4,STATUS='OLD',ACCESS='SEQUENTIAL',-

FILE='FLUXFAC.DAT')
DO 222 KI=I,101

READ(14,*)JI,XPSIV(JI)
222 CONTINUE

CLOSE (UNIT = 14)
OPEN (UNIT= 14, S TATU S = 'OLD',ACCES S =' SEQUENTIAL ',FILE-'S OLAR 1.FLX ')

DO 223 KI=I,1188

READ(14,*)SOLAR(KI)
223 CONTINUE

CLOSE (UNIT = 14)
OPEN(UNIT= 14,STATUS='OLD',ACCE, SS =' SEQUENTIAL' ,FILE='METVEL.INP' )

DO 224 KI=1,72

READ(14,*)XMETIV(KI)
224 CONTINUE

CLOSE (UNIT = 14)
OPEN (UNIT= 14,STATUS =' OLD',ACCES S=' SEQUENTIAL',

+ FILE--'DEBOLDVE.DAT')
DO 225 KI=I,16

READ(14,*)IV,XDEBOLDW(IV)
225 CONTINUE

CLOSE (UNIT = 14)
C

Read PSDOC controlling switches and set impact10 variables accordinglyC

C

OPEN (UNIT= 14,STATUS = 'OLD',A CCES S='SEQUENTIAL',
+ FILE='SWITCH.INP')

DO 226 KI=I,10

READ(14,*)ISWITCH(KI)
226 CONTINUE

CLOSE (UNIT = 14)
N-ENVIRON = !SWITCH(I)

IBUMPER_TYPE=IS_FI(2) _

IBUMPER_MATERIAL=IS WITCH(3)
IWALL_TYPE = ISWITCH(4)
IWALL_MATERIAL=ISWITCH(5 )

ISW6 = ISWlTCH(6)
ISW7 - ISWITCH(7)
ISW8 = ISWITCH(8)

C NOTE: CURRENTLY WE ARE NOT MAKING USE OF ISW1TC_(9)
IGRAPH_TYPE=ISWITCH(10)

C

C

C Open appropriate files for environment depending on switch
settings.

An Employee-Owned Company



156 --++

C

C

C

C BUMPER DATABASE.

C '--.---_-_--__-.---_, = =::_

IF (IBUMPER_TYPE.EQ. I)THEN

IF (NENVIRON.EQ.1) THEN
OPEN(UNIT=20,STAWS='OLD',ACCESS='SEQUE_',

+ FILE='NEWDEBRI._qP _)
END IF

IF (NENVIRON.EQ.2) THEN
OPEN(UNIT=20,STATUS='OLD',ACCESS='SEQUENTIAL',

+ _E='OLDDEBRI.INP')

END IF ......., _+ =
IF (NENVIRON.EQ.3) THEN

OPEN (UNIT =20,STATU S='OLD',A CCE SS='SEQUENTIAL', :

+ FILE='NE_T.INP')
END IF

C Open appropriate files and read data from bumper database if

the table data is used rather than the single material (parametric)

settings. : : ................ : ,- ,::::: ; : .....
k.__.

BUMPER_TYPE_NAME='Bumper Material Database'
IF (IBUMPER_MATER/AL.EQ. 1) THEN

BUMPER_MAT_NAME-'AhI_num AHoy T " = +
OPEN(UNIT=30,STATUS='OLD',ACCESS=' SEQUENTIAL',

+ FILE='ALBUMP.INP')
OPENOjNIT=32,STATUS='OLD',ACCESS='SEQUE_',

+ FILE='ALBM.TBL')
ELSE IF (IBUMPER_material.EQ.2)THEN

BUMPER_MAT_NAME='Titanium Alloy,_+_ :_ :_+ +_ .+=_ i
OPEN(UNIT=30,STATUS='OLD',ACCESS='SEQUENTIAL',

+ FILE='TIBUMP.INP')
OPEN (UNIT=32,STA TU S='OLD',A CCES S='SEQUENTIAL',

+ FiLE='TITBM.TBL')
ELSE IF (IBUMPER_MATERIAL.EQ.3)THEN

BUMPER_MAT_NAME='Steel Alloy' ::: =:-:--:: .... : :
OPEN(UNTr=30_"rATUS='OLD',ACCESS--_SEQUENTIAL',

+ FILE='STBUMP.1NP')

OPENCtYNIT=32,STATUS = 'OLD',ACCESS =' SEQUENTIAL ',

+ FILE='STBM.TBL') ....... , " ......
ELSE IF (IBUMPER_MA'i__.EQ.4) THEN

BUMPER_MAT_NAME='Inconel Alloy'
OPEN(UNIT=30,STATUS='OLD',ACCES S=' SEQUENTIAL', _ _ ....

+ FILE='INBUMP.INP') .......
OPEN(UNIT=32,STATUS ='OLD',ACCESS=' SEQUENTIAL',

+ FILE='INCBM.TBL')
ELSE IF (IBUMPER_MATERIAL.EQ.5)THEN

BUMPER_MA_NAME='Graphite Alloy'
OPEN(UN!T=30,STATUS='OLD',ACCESS='SEQUENTIAL',

+ FILE='GRBUMP.INP')
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31

.4-

5010

627
6000
628

OPEN (UNIT=32,STATUS =' OLD',ACCES S =' SEQUENTIAL',
FILE='GRALBM.TBL')

ELSE
write(*,*)'Input Error from PSDOC interface -'
write(*,*)'Program Terminated with internal error.'
write(*,*)'Bad Ibumper_material switch.
goto 11

END IF
C Read Number of bumpers in selected table

Read(30,31)nbump
format(I10)

c Read Table files for Material names

Skip 7 line header fhst
DO 5010 KI=l,7

READ(32,*)
CONTINUE

DO 627 KI--1,nbump
READ(32,60_,END=628)BUMPER_NAME(KI)
CONTINUE
format(al4)

CLOSE (UNIT- 32)

c For parametric settings, open bumper.inp using same file handle as table
c setting. This will allow us to use the same code regardless of the method
c chosen.

C SINGLE BUMPER MATERIAL

else IF 0BUMPER_TYPE.EQ.2) THEN
BUMPER TYPE NAME='Single Bumper Material'
OPEN(UNIT=30,STATUS='OLD',ACCES S=' SEQUENTIAL',

+ FILE='BUMPER.INP')
N-BUMP = 1

else
write(*,*)'Input Error from PSDOC interface -'
write(*,*)'Program Terminated with internal error.'
write(*,*)'Bad Ibumper_type switch.
goto 11

END IF

C

c settings.
C
C___

C SELECT WALL MATERIAL
C___

C Open appropriate files and read data from wall database if
the table data is used rather than the single material (parametric)

(SINGLE/DATABASE)
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C
C

C

+

+

5015

637
638
6002

WALL TYPE NAME='Wall MaterialDatabase'
IF (IWALL MATERIAL.EQ. I)THEN
WALL MAT_NAME='AIuminum Alloys_ ......
OPEN(UNIT=35,STATUS='OLD',ACCESS=' SEQUENTIAL',

+ FILE='ALWALL.INP')
OPEN(UNIT=39,STATUS='OLD',ACCESS='SEQUENTIAL',

+ FILE='alwall.tbl')
else IF (IWALL_MATERIAL.EQ.2)THEN

WALL_MAT_NAME='Advanced Launch System'
OPEN(UNIT=35 ,STATUS ='OLD' ,ACCESS=' SEQUENTIAL',

FILE='ALSWALL.INP')
OPEN (UNIT=39 ,STA TU S='OLD',A CCESS='SEQUENTIAL ',

FILE='ALSWALL.TBL')
else

write(*,*)'Input Error from PSDOC interface -'

wfite(*,*)'Pro_ Te_nat_e¢l wi_th intem a! ¢rt_r,,
write(*,*)'Bad Iwall_material sw,tch.
goto 11

end if
Read Number of walls in selected table

Read(35,31 )nwall
DO 5015 KI=I,7

READ(39,*) _.
CONTINUE

DO 637 KI=I,NWALL
READ(39,6002,END=638)WALL_NAME(KI) ....
CONTINUE
CLOSE (UNIT = 39)
format (a 11)

C
.....-. .......... .

SINGLE WALL MATERIAL
else _(P(VA___E.EQ.2)_

WALL_TYPE_NAME='Single Wall Material'
OPEN(UN1T=35,STATUS='OLD',ACCESS='SEQUENTIAL',

+ FILE='WALL.INP')
NWALL = i

else
write(*,*)'Input Error from PSDOC interface -'
write(*,*)'Program Terminated with internal error.'
write(*,*)'Bad Iwali type Switch.
goto 11

END IF

m
g

m

U

g

g

J

I

g

= =

D

II

J

U

II

l

D

U

W

An Employee-Owned Company

m

l

J



159

,w

L

m

c if using Table option, open new tablel.out file and write headers
if ((ibumper_type.eq. 1).or.(lwall_type.eq. 1)) then

OPEN0.INITf37,STATUSf'unknown',ACCESSf'SEQUENTIAL',
+ FILEf'TABLE1.OUT')

C Read headers into tablel.out file

open(unit=33,status='old',access=' sequential',
+ filef'table 1.hdr')

write(37, '(Ix, A10,1x, 12.2, 1H:, I2.2, 1H:, I2.2, 1H.,

+12.2)') ctime, ihr, imin, isee, il00th
write(37, '(Ix, A10,1x, I2.2, 1H-, 12.2, 1H-, I4.2)')

+ cdate, imon, iday, iyr
do 6005 i ffi 1,4

read(33,6007)line 1
write(37,6007)line 1

6005 continue
6007 format(a80)

read(33,6007)linel
line2 = line 1(1:12)//bumper_mat_name//line 1 (53:80)

write(37,6007)line2
read(33,6007)linel
line2 - linel(l: 12)//wall_mat_name//1ine1(53:80)

write(37,6007)line2
do 6006 i--1,7

read(33,6007)linel
write(37,6007)line 1

6006 continue

close(unit=33)
end if

C

C READ GEOMETRICAL SHAPE

C

IF (ISW6.EQ. 1) THEN

SHAPE = 'Cylinder'
else

write(*,*)'Input Error from PSDOC interface -'
write(*,*)'Program Terminated with internal error.'
write(*,*)'Bad Isw6 switch.

goto 11
END IF

C READ IMPACT MODEL

C
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IF (ISW7.EQ. 1) THEN
IMPACT_MODEL--'Single Impact M_el' ....

else IF (ISW7.EQ.2)
IMPACT_MODEL='Three Impact Regions'

else
write(*,*)'Input Error from PSD_ interface -'
write(*,*)'Program Terminated with internal error.'
write(*,*)'Bad Isw7 switch. '
goto 11

end if
IF (ISWS.EQ. 1) THEN

DEBRIS_ENVIRONMENT='Boeing Model'
NCODE - 2

else
write(*,*)'Input Error from PSDOC interface -'
write(*,*)'Program Terminated with internal error.'
write(*,*)'Bad Isw8 switch.
goto ! 1

END IF

C SELECT GRAFTOOL OUTPUT FILE FORMAT

C
C
C
C

Write the definitions and the headings in the temporary output
file ( zgaaaaaj.pgrn ) in the c:kpsdockinput directory.

This format is critical to PSDOC front-end...don't change!
IF (IGRAPH_TYPE.EQ. 1)THEN

WRITE(27,*)'/The Output Variables Are Defined As: '
WR1TE(27,_)']"
WRITE(27,*)'/ Column

WRITE(27,*)'/Column
WRITE(27,*)'/Column
WRITE(27,*)'/ Column

+ ' Per Unit Area'
WRITE(27,*)'/Column

+ ' Per Unit Area'
WRITE(27,*)'/ Column

+ //' Unit Area'
WRITE(27,*)'/Column
WRITE(27,*)'/Column
WRITE(27,*)'/ Column
WRITE(27,*)'/ Column

+ //' Diameter'
WRITE(27,*)'/ Column
WRITE(27,*)'/ Column

+ // ' Rate'

1: run- Run-#'

2: T1 = Optimal Bumper Thickness'
3: '12 = Optimal Wall Thickness,
4: OBMPUA = Optimal Bumper Mass'//

5: OWMPUA = Optimal Wall Mass'//

6: WT = Minimum System Mass Per'

7 : WTCMC = Mnimum CMC Weight'
8 : OBR --!"Optimal Bumper Ratio' _
9 : OWR = Optimal Wall Ratio'
10 : D = Critical Design Projectile'

11: RHOP = Projectile Density'
12: XGROWTH = Space Debris Growth'

An Employee-Owned Company

m

II

g

IB

m

i

m

m

m

u

g

l

flm

m

II

_= -
WlB

7

-= !III

J

m

m

u

m



161
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+

+

+

776

C

C

WRITE(27,*)'/Column 13:IMONTH1 = Initial Operation Month'
WRITE(27,*)'/ Column 14:IYEAR1 = Initial Operation Year'
WRITE(27,*)'/ Column 15:IMONTH2 = Final Operation Month'
WRITE(27,*)'/ Column 16:IYEAR2 = Final Operation Year'

WRITE(27,*)'/ Column 17: ALT = Spacecraft Orbital'//
+ ' Altitude'

WRITE(27,*)'/Column 18: XINCL = Spacecraft Orbital'//
+ ' Inclination'

WRITE(27,*)'I Column 19:XP0 = SpacecraftProbability'//
+ 'Of No Penetration'

WRITE(27,*)'/Column 20: AREAK = SpacecraftExposed'H

+ ' Area'

WRITE(27,*)'/Column 21: S = Spacecraft Bumper / Wall'//

+ ' Separation'
WRITE(27,*)'/'
WRITE(27,*)'/'
WRITE(27,*)'/'
WRITE(27,*)'IValid X- Columns Are: '
WRITE(27,*)'/11,16,17,18,19,20 '
WRITE(27,*)'/Valid Y - Columns Are: '

WRITE(27,*)'/ 2,3,4,5,6,7,8,9 '
WRITE(27,*)'/'
WRITE(27,*)'/'
WRITE(27,*)'/'
WRITE(27,776)'/RUN-# ','T1 '',T2',' OBMPUA ','OWMPUA',

'WT','WTCMC',' OBR ','OWR ','D ','RHOP ','XGROWTI--I',

'IMONTHI' 'IYEARI',' IMONTH2','IYEAR2'

,'ALT ','XINCL ','XP0 ','AREAK ','S'

FORMAT(21(A12,1X))

WRITE THE DEFINITIONS AND THE HEADINGS IN THE OUTPUT

FILE (RESULTS.OUT )IN THE LOTUS (123)FORMAT
elseIF (IGRAPH_TYPE.EQ.2)THEN

WRITE(27,*)' " ','The Output VariablesArc'//

+ 'Defined As: ','" '

T1 = Optimal Bumper Thickness',' " '
T2 = Optimal Wall Thickness',' " '
OBMPUA - Optimal Bumper Mass Per Unit'

OWMPUA = Optimal Wall Mass Per 'H

WT = Minimum System Mass Per Unit 'H

WTCMC = Minimum CMC Weight', ....
OBR = Optimal Bumper RATIO',' " '
OWR = Optimal Wall RATIO',' " '
D = Critical Design Projectile '//

r®
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777

C #

C

WRITE(27,*)'" ','RHOP = ProjectileDensity','" ' ....

WRITE(27,*)' " ',' XGROWTH = Space Debris Growth Rate', .... .
WRITE(27,*)' " ',' IMONTHi = Initi_iFOper/m0nq_onth'

WRITE(27,*)'" ',' IYEAR1 = Initial Operation Year'
WRITE(27,*)' " ',' IMONTH2 = Final Operation Month'
WRITE(27,*)' " ',' IYEAR2 = Final Operation Year'

WRITE(27,*)' " ',' ALT = Spacecraft Orbital Altitude',' " '
WRITE(27,*)' " ',' XINCL = Spacecraft Orbital '// _ _

'Inclination',' "' ,............. ,.... __ _....

WRITE(27,*)' " ',' XP0 = Spacecraft Probability Of No '//
'Penetration',' " '

WRITE(27,*)' " ',' AREAK = Spacecraft Exposed Area',' "'
WRITE(27,*)' " ',' S = Spacecraft Bumper / Wall '//

'Separation',' "'
WRITE(27 *)' " "'
_(27,*)' " "'
WRITE(27 ,*)' " "'

WRITE(27,*)'/Valid X" Colu_s Are:,' _ _
WRITE(27,*)'/11,16,17,18,19,20 '
WRITE(27,*)'/Valid Y - Columns Are: '
WRITE(27,*)'/2,3,4,5,6,7,8,9 '

WRITE(27,*)' " "' - 7 =

WRITE(27,*)' " " '
WRITE(27,*)' " "'
WR1TE(27,777)'"RUN-#"','"Tl"',"_I'2"','"OBMPUA"','"OWMPUA"',
'"WT"', '"WTCMC"','"OBR"', '"OWR"','"D" ', '"RHOP" ', "_XGROWTH"', :

'"IMO_I",'"_i"','"IMONTH2"','"IYEAR2"','"ALT"',
'"XINCL"','"XP0"','"AREAK"','" S"'

FORMAT(21(A12,1X))
else

write(*,*)'Input Error from PSDOC interface -'
write(*,*)'Program Terminated with internal error.' _ _
write(*,*)'Badlgraph switch.

goto 11
END IF

C CALCULTE THE NUMBER OF MATERIALS "NMATS"
N_TS = NBUMP * NWALL

C 41444_t414/-4## 4/-41_4# _ 414#4_t4/t4#4./.4t_ 4_4it4_/.4/.-D,/4.##_ _ _ _fl fl #_#_

MAIN LOOP BEGINS #
4_-4#_ 4/-/444_4/. H..R-_/4-/4-4/--gt/i- _ 4# # 44#,1.# 41_l.### ## _ _ _ _ _ # _ ## # ## #

C 1N HERE WE ARE INITIALIZING THE COUNTER VARIABLE 'T'

I=1

iiii = 0
write(*,*)
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Z

y"

2..._

21

C

C

C

C

C

C

C

C

C

20 CONTINUE
iiii = iiii + 1

write(*,21)iiii
format('+Status - Running Case: ',I4)

Reset files 20,23,26 (newdebri.inp, olddebri.inp,

ne_met.inp, craft.inp, and geometry.inp)
when running in table mode. If parametric, always rewind 30, 35

(bumper.inp, and wall.inp) for proper execution.
if (ibumper_type.eq. 1) then

rewind(20)
rewind(23)
rewind(26)

else ff (ibumper_type.eq.2) then
rewind(30)

end if

if (iwall_type.eq.2) then
rewind(35)

end if

SEEDVAL = 73

call Seed (SeedVal)
tl =0

t2 =0

obmpua - 0
owrnpua = 0
wt - 0
wtcmc = 0

obr = 0

IF (NCODE.EQ.1) then
NYSMITH

C PROJECTILE DIAMETER IN CM **** READ(10,*)

READ(22,*,end= 11)D
C B_ER / Wall SEPARATION **** READ(10,*)H

READ(23,*,end= 11 )S
C **** READ(10,*)RHOI'

READ (24,*,end=l 1)RHO1
C **** READ(10,*)RHO2'

READ (25,*,end=l 1)RHO2
C **** _AD(10,*)CMCLEN

READ (26,*,end= 11)CMCLEN
C **** READ(10,*)CMCRAD

READ (26,*,end= 11)CMCRAD

c WRITE(11,*)' NYSMITH'
WR1TE(11,*)
WRITE(11,*)' INPUT'
WR1TE(11,*)
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C

C

C

C

C

C

C

C

C

C

C

C

C

WRI'I_(ll,*)'
WR1TE(11,*)'
WR1TE(11,*)'
wRrl_(l 1,*)

T1T = 0
T2T= 0

Projectile Diameter In CM = ',D
Bumper/Wall S_eparation In CM = ',H

Bumper/Wall Separation In CM = ',S

V = FLOAT(J) _ :'-:_'_-__ _-_ _:_=:_-_.........
C CALL NYSMrrH(V,I),H,RHO I,RHO2,T I,T2,WT,WTCMC)

CALL NYSMITHCq, D, H, RHOI, RHO2, TI, T2)
TIT = TIT + T1 * XPV(J) . ,

T2T = T2T + T2 * XPV(J)
26 CONTINUE

T1 = TIT

T2 =T2T
WT =RHOI * TI + RHO2 * T2
RI2 = CMCRAD
R22 = RI2 + T2
RII =R22 +H
R21 =RII +TI ....
WTCMC = 3.1416 * (CMCLEN/I000.0)
WTCMC=WTCMC*(RHO I*(R2 I**2.-R I I**2)+RHO2*(R22**2.-R 12**2.))

c WRITE(11,*)' OUTPUT'
WRITE(11,*)
WRITE(11,*)'
WRITE(11,*)'
WRITE(11,*)'
WRITE(11,*)'
WRITE(I I,*)
WRITE(I I,*)

WRITE(I I,*)

Bumper Thickness = ',TI,'CM'
Wall Thickness = ',T2,'CM'

Minimum Weight = ',WT,'GM/Square CM'
CMC Minimum Weight = ',WTCMC,'KG'

else IF (NCODE.EQ.2) then .... _ ......
BOEING

C NENVmON = 1 r_> EARTH ORBITAL SPACE DEBRIS (NEW)

IF(NENVIRON .EQ. 1) THEN
READ(20,*,end= 11)XGROWTH
READ(20,*,end= 11)x

IMONTH1 = x

_(20,*,end= I l)x
IYEARI =x

READ(20,*,end= I l)x
IMO_ = ×

READ(20,*,end= I l)x
IYEAR2 = x
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+

555

C

READ(20,*,end= ll)ALT
READ(20,*,end=l I)XINCL
READ(20,*,end-1 I)XP0
READ(23,*,end=I I)AREAK

INCL = IFIX(XINCL + .5)

XPSI = XPSIV(INCL)

CALL DEBRIS (XGROWTH,SOLAR,XPS I, IMONTH I ,IYEAR I,IMONTH2,

IYEAR2,ALT,XINCL,XP0,AREAK,D,XPV,IVMAX)

RHOP = 2.8

IF(D .GT. 1.0) THEN
RHOP = 2.8/(I)*'0.74)

END IF

else if (NENVIRON .EQ. 2) THEN
C NENVIRON = 2 --> EARTH ORBITAL SPACE DEBRIS(OLD)

READ(20,*,end=I 1)T
READ(20,* ,end= 11)XP0
READ(23,*,end= 11 )AREAK

CALL DEBRISOLD(T, XP0, AREAK, D)
RHOP = 2.8

DO 555 KIJK--1,16

XPV(KUK) - XDEBOLDIV(KIJK)
CONTINUE

else if (nenviron.eq.3) then
N-ENVIRON = 3 --> Near Earth Meteoroid

READ(23, *,end= 11)AREAK
READ(20,*,end= 11)T
READ(20,*,end= 11)ALT
READ(20,*,end= 11)XP0

DENS = .5 •

CALL METEOROID(AREAK, T, XP0, ALT, DENS, D, L)

RHOP = DENS
IVMAX = 72

544

DO 544 KIJK=l,72
XPV(KIJK) = XMETIV(KIJK)
CONTINUE

end if

READ(23,*,end= 11)S
READ(26,*,end= 11)CMCLEN
READ(26,*,end= 11 )CMCRAD

READ(30,*,end= 11)RHO 1
RHO I - C_RHO I (K)

V@
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C

READ(30,*,end=I I)SYI
SYI ffi C_SYICK)

READ(30, * ,end= 1 I)E I
El = C_EI(K)

READ(35,*,end-- ! I)RHO2
RHO2 = C_RHO2(K)

READ(35,*,end=I I)XL2
XL2 - C_XL2(K)

READ(35,*,end= I I )SY2
SY2 = C SY2(K)

XN = .85
SYI = SYI * 144000.0

SY2 - SY2 * 144000.0
El = E1 * 6.880285E+I0

TiT = 0.0
T2T = 0.0

DO 36 J=I,IVMAX
V = FLOAT(J)
IF(XINCL .GT. 40.0)THEN

THETA = ACOS(-1.0 * V / IVMAX) - 1.57

IF(THETA .GT. 1.57)THEN
THETA = 1.57

END IF
ELSE

THETA = ACOS(-1.0 * V / 15.4) - 1.57
END IF

C 3676 CALL BOEINGOI,D,RHOPIRHOI,RHO2,S,XL2,SYI,SY2,THETA,
+ XN,E I,CMCRAD,TI,T2,WT,WTCMC)

+

3676 CALL BOEING0/,D,RHOP,_O I,RHO2,S,XL2,SY I,SY2,_A,
XN,E1,CMCRAD,T1,T2,WT)

TIT = TIT + XPV(J) * T1
T2T = T2T + XPV(J) * '12

36 CONTINUE
T1 = TIT

T2 = T2T
WT =RHO1 * T1 + RHO2 * '1"2
R12 = CMCRAD

P.22= CMC D +
Rll = CMCRAD + "I'2 + S

P,21 = CMCRAD + T1 + 'I"2 + S

VB=3.1416*(CMCLEN/1000.)* (R2 l**2.-R 11"'2.)
VW=3.1416*(CMCLEN/1000.)*(P,22**2.-R 12"'2.)
_CMC = RHO 1 * VB + RHO2 *

991 CONTINUE
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else IF (NCODE.EQ.3) then
C MADDEN

****** MADDEN MINIMIZES SUM OF THICKNESSES ONLY *******

r

7

C 45 READ(10,*)D

C PROJECTILE DIAMETER IN CM **** READ(10,*)D

READ(22,*,end= 11)D
e READ(10,*)RHOP
C ****** (10,*)S

READ(23 ,*,end= 11 )S
c READ(10,*)RHO
c WRITE(11,*)' MADDEN'

c WR1TE(11,*)
c WR1TE(11,*)'
c WR1TE(11,*)
c WRITE(11,*)'
c WRITE(11,*)'
c WRITE(11,*)'
c WRITE(11,*)'
c WRITE(11,*)

T1T = 0.0
T2T = 0.0

INPUT'

Projectile Diameter In CM =',D
Projectile Density In IN GM/Cubic CM = ',RHOP
Bumper/Wall Density In GM/Cubic CM = ',RHO
Bumper/Wall Separation In CM = ',S

DO 46 J=l,16
V = FLOAT(J)

C CALL MADDEN(V,D,RHOP,S,RHO,T 1,T2,WT,WTCMC)
CALL MADDEN(V, D, RHOP, S, RHO, T1, T2)
T1T = T1T + T1 * XPV(J)

T2T = T2T + '1'2 * XPV(J)
46 CONTINUE

T1 = TIT
T2 =T2T
WT=T1 +T2
R12 = 211.0
P,22 = 211.0 +'1"2
Rll = 211.0 +T2+S
R21 = 211.0 +T1 +T2+S

VB--4.27*(R2 l**2.-R 11"'2.)
VW=4.27*(R22**2.-R 12"'2.)
WTCMC = RHO * (VB + VW)

c WR1TE(11,*)' OUTPUT'
WR1TE(11,*)
WRITE(11,*)'
WRITE(11,*)'
WR1TE(11,*)'
WR1TE(11,*)'

Bumper Thickness = ',TI,'CM'
Wall Thickness = ',T2,'CM'

Minimum Weight = ',WT,'CM'

CMC Minimum Weight = ',WTCM_
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12

WRITE(11,*)
WR1TE(11,*)
WRITE(11,*)
C

else IF (NCODE.EQ.4) then
WILKINSON

C **** READ(10,*)D
READ(22,*,end=11)D

C **** READ(10,*)RHOP
READ(22,*,end=l 1)RHOP

C **** (10,*)RHO1
READ(24,* ,end= i 1)RHO 1

C **** (10,*)RHO2
READ(25,*,end=l 1)RHO2

C **** (10,*)S
READ(23,*,end-11)S

C **** (IO,*)XL2

READ(25,*,end=l 1)XL2 --_ ,: -_: -
C **** (10,*)CMCLEN

READ(26,*,end= 11)CMCLEN
C **** (10,*)CMCRAD

READ(26,*,end= 11)CMCRAD
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C

C

C

C

¢

C

C

C

WRITE(11 ,*)
WRITE(11,*)'

WRITE(11,*)
WRITE(11,*)'
WRITE(11,*)'
WRITEO 1,*)'
WRITE(ll,*)'
WRITE(11,*)'
wRrrE(11,*)'
WRITE(11,*)

TIT = 0.0
T2T = 0.0

&

C
&

WRITE(11,*)' WILKINSON'

INPUT'

Projectile Diameter In CM= ',D
Projectile Density In GM/Cubic CM = ',RHOP
Bumper Density In GM/Cubic CM = ',RHO1 ......
Wall Density In GM/_ubicCM-- ',_O2
Bumper/Wall Separation In CM -- ',S
Wall Material Constant = ',XL2

DO 56 J=l,16
V = FLOAT(J)

CALL WILKINSONCV,D,RHOP, RHO I,RHO2,S,XL2,
TI,T2,WT,WTCMC)

CALL WILKINSON(V,DI_OP, RHO I,RHO2,S,XL2i. ::
TI,T2)
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r _

L

TIT = TIT + T1 * XPV(J)
T2T = T2T + 'I'2 * XPV(J)
56 CONTINUE

C

C

C

C

C

C

C

C

TI = TIT
TR =T2T
WT = RHO1 * TI + RHO2 * T2

R 12 = CMCRAD
R22 = CMCRAD + T2
RI 1 = CMCRAD + T2 + S
R21 = CMCRAD + TI + T2 + S

VB=3.1416*(CMCLEN/1000.)*(R21 **2.-RI I **2.)
VW=3.1416*(CMCLEN/1000.)*(R22**2.-R 12"'2.)
WTCMC = RHO I * VB + RHO2 * VW

c WRITE(I I,*)' OUTPUT'
WRITE(I I,*)
WRITE(I I,*)'
WRITE(I I,*)'
WRITE(I I,*)'
WRITE(I I,*)'
WRITE(11,*)
WRITE(11,*)
WR1TE(11,*)

Bumper Thickness = ',TI,'CM'
Wall Thickness = ',T2,'CM'

Minimum Weight = ',WT,'GM/Square CM'

CMC Minimum Weight = ',WTCMC,'KG'

C

..Rw..--.--.

else IF (NCODE.EQ.5) then
MODIFIED BURCH

C **** READ(10,*)D
READ(22,*,end= 11)D

C **** (10,*)RHO1
READ(24,* ,end= 11)RHO 1

C **** (10,*)RHO2
READ(25,* ,end= 11)RHO2

C **** (10,*)S

READ(23,*,end=l 1)S
C **** READ(10,*)THETA

READ(22,*,end= 11)THETA
C **** READ(10,*)XN

READ(24,*,end= 11)XN
C **** (10,*)El

READ(24,* ,end= 11)E 1
C **** (10,*)CMCLEN

READ(26,*,end= 11 )CMCLEN
C **** (10,*)CMCRAD

READ(26,*,end= 11)CMCRAD

***** MODIFIED BURCH *****

rill mllrgl TIT _7
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C

c WRITE(11,*)
c WRITE(11,*)'
c WR1TE(1 I,*)
c WRITE(11 ,*)'
c WR1TE(11,*)'

c WR1TE(I 1,*)'
c WRITE(I 1,*)'
c WRITE(I I,*)'

C + ' Bumper=',
c WRITE(11,*)'
c wRrrE(11,*)

E1 = E1 *
T1T = 0.0
TRT = 0.0

C

C &

C

C

c

c
c

c

c

C

WRrFE(I I,*)' MODIFIED BURCH'

INPUT'

Projcctilc_Diam.ctcrIn CM = '_ ....

Bumper Density In GM/Cubic CM = ',RHOI

Bumper/Wall SeparationIn CM = ',S

Impact Angle From Normal InDegrees = ',_TA
Number Of PlatesTo PenetrateAfterFirst',- i_ _

XN

Bumper Youngs Modulus In MSI = ',El

6.880285E+10

DO 66 J=l,16
V =, FLOAT(J) .......................................................... _::

CALL BURCH(V,D,RHO1,RHO2,S,THETA,
XN,E1,T1,T2,WT,WTCMC)

&
CALL BURCH(V_,P.HO 1 ,RHO2,S,THETA,

XN,E1,T1,T2,TIB,F1)

T1T = T1T + T1 * XPV(J)
T2T = T2T + T2 * XPV(J)

66 CONTINUE

T1 = T1T
T2 =T2T
WT = RHO1 *T1 + RHO2* T2
R 12 = CMCRAD

R22 = CMCRAD + T2
RI I = CMCRAD + T2 + S
R21 ---CMCRAD + TI + TR + S

VB=3.1416*(CMCLEN/1000.)*(R2 I**2.-R 1 I*'2.)
VW=3.1416*(CMCLEN/1000.)*(R22**2.-R 12"'2.)
WTCMC = RHO I * VB + RHO2 * VW

c WR1TE(11,*)' OUTPUT'
WRITE(I I,*)
WRITE(I 1,*)'
WRITE(I I,*)'

WRITE(I I,*)'

WRITE(I I ,*)'
WRITE(I I,*)
WRITE(I I,*)
WRITE(I 1 ,*)

Bumper Thickness --',TI,'CM'
Wall Thickness --',T2,'CM'

Minimum Weight = ',WT,'GM/Squarc CM'

CIVIC Minimum Weight = ',WTCMC,'KG'
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w

C..w....--lw...--

end if

C

C HERE WE DEFINE AND CALCULATE NEW VARIABLES

NEEDED FOR OUTPUT
C OPTIMAL BUMPER MASS PER UNIT AREA

OBMPUA = T1 * RHO1
C OPTIMAL WALL MASS PER UNIT AREA

OWMPUA = 'r2 * R/-IO2
C OPTIMAL BUMPER RATIO

OBR = TI * RHOI/WT
C oFrIMAL WALL RATIO

OWR = T2 * RHO2 / WT
C SPACECRAFT INITIAL OPERATING CAPABILITY

SIOC = IYEAR1

C SPACECRAFT MISSION DURATION
SMD = IYEAR2 - IYEAR 1 + 1

C
C
C

C ............

C ._wi_wwmww.

HERE WE WRITE THE CALCULATED OUTPUT VALUES

TO THE MAIN OUPUT FILE CALLED 'RESULTS.OUT'

782

if ((ibumper_type.eq. 1).or. (iwall_type. eq. 1)) then
C Write Calculated Output Values To' TABLE1.OUT'

WRITE(37,782) BUMPER_NAME(iiii),WALL_NAME(iiii),T 1,
+ T2,OB MPUA,OWMPUA,WT,WTCMC

FORMAT((A 14,1X),(A 11,1X),(5F7.4,1X),F9.2)

else

IF (IGRAPH_TYPE.EQ. 1)THEN
778 WR1TE(27,779)I,T1,T2,OBMPUA,OWMPUA,WT,WTCMC,OBR,OWR,D,RHOP,

+ XGROWTH,IMONTH 1,IYEAR 1,IMONTH2,IYEAR2,ALT,XINCL,XP0,AREAK,S
WRITE(29,779)I,T1,T2,OBMPUA,OWMPUA,WT,WTCMC,OBR,OWR,D,RHOP,

+ XGROWTI-I,IMONTHI,IYEARI,IMONTH2,IYEAR2,ALT,XINCL,XP0,AREAK,S
779 FORMAT(I9,1X,11 (F12.4,1X),4(I9,1X),5(F12.4,1X))

else if (igraph_type.eq.2) then
780 WRITE(27,781)I,',',TI,',',T2,',',OBMPUA,',',OWMPUA,',',

+ WT,',',WTCMC,',',OBR,',',OWR,',',D,',',RHOP,',',
+ XGROWTH, ',' ,IMONTH 1 ,',' ,IYEAR I ,',' ,IMONTH2,',',IYEAR2, ', ',
+ ALT,',',XINCL,',',XP0,',',AREAK,',',S

WRITE(29,779)I,TI,T2,OBMPUA,OWMPUA,WT,WTCMC,OBR,OWR,D,RHOP,
+ XGROWTH,IMONTHI,IYEARI,IMONTH2,IYEAR2,ALT,XINCL,XP0,AREAK,S

781 FORMAT(I9,1X, 11 (F12.g, lX),g(I9,1X),5(F12.4,1X))
end if

end if
I=I+1

10 GOTO 20
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C
C

3675

11 CONTINUE
c HERE WE WRITE THE CALCULATED VALUES OF "V",

"XPV(V)", AND "T/-IETA" TO THE O_ FiLE CALLED

"PROJECT.OUT" prior to leaving
WR1TE(28,3675)V,XPV(V),THETA

FORMAT(3(F9.5,1X))

wdte (*,*) ' Program Finished'
CLOSE (UNIT = 20)
CLOSE (UNIT = 23)
CLOSE (UNIT = 26)
CLOSE (UNIT = 27)
CLOSE (UNIT - 28)
CLOSE (UNIT = 29)

CLOSE (UNIT = 30)
CLOSE _ = 35)

CLOSE (UNIT = 37)
STOP

END

C
C
C SUBROUTINES BEGIN HERE

C
C ........... _ _:::__--:_-: T-_I:::_._

&

C

SUBROUTINE DEBRIS(XGROWTH,SOLAR_SLIMONTHI,_RI,IMONTH2,
IY R2,ALT,XINCL,XP0,AREAK,D,XPV,IVMAX)

DIMENSION SOLAR(100),XPV(100),XPSIV(105) <--- MODIFIED

DIMENSION SOLAR(1188), XPV(100)

G1TOT = 0.0 "
G2TOT = 0.0
NYEARS = IYEAR2 - IYEAR1 + 1
NMONTHS = 12*(IYEAR2-IYEAR li+imonth2-imonth 1

DO 582 IL=I,NMONTHS

XPHI I=10.**((ALT/200.)- ?i:_:=_: _ :. , :_:
& (SOLAR(12*(IYEAR 1-1987-1)+imonth i+IL- 1)/140.)- 1.5)

XPHI = XPHI1 / (XPHI1 + 1.0 )

G 1=( 1.+2.*XGRO_)**(iYEAR 1- 1985+(imonth 1+il-2)/12.0)
G2=(1.+XGROWTH)**(IYEAR1-1985+(imonth1+il-2)/12.0)
G1TOT = G1TOT + XPHI * G1

G2TOT = G2TOT..... + XPHI * G2 ......
582 CONTINUE
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584

588

FLUX - 12.0 * ALOG(XP0) / (AREAK * XPSI)
DEN - -1.0 * (5.9499E-07 * G2TOT + FLUX)
XNUM - .0000105 * G1TOT
D-(XNUM/DEN)**0.4
YG -" 250.0
Y'F- 0.0
YC -- .0125
YE = .55+ .005* (XINCL -30.0)
YH- 1.0-0.0000757*(XINCL-60.0)**2.0
YA = 2.5
YB --.3
YD = 1.3-.01* (XINCL -30.0)
YV0 = 7.7

IF(XINCL .I.E. 60.0)THEN
YB -.5
YG = 18.7
YV0 = 7.25 + .015 * (XINCL - 30.0 )

END IF
IF(XINCL .I.E. 80.0 .AND. XINCL .GT. 60.0)THEN

YB ---.5- .01* (XINCL -60.0)
YG---18.7+0.0289*(XINCL-60.0)**3.0
END IF

IF(XINCL .GT. 100.0)THEN
YC = .0125+ .00125* (XINCL - 100.0)

END IF
IF(XINCL .LE.50.0)THEN

YF=0.3+0.0008*(XINCL-50.0)**2.0
END IF

IF(XINCL .GT.50.0.AND. XINCL .LE.80.0)THEN
YF -- .3 - .01 * (XINCL - 50.0 )

END IF
XSUMIV = 0.0

IVMAX = 1
IV= 1

XPV(IV)fYG*2.7183**(-1.0*((IV-YA*YV0)/(YB*YV0))**2.0)
XPV(IV)fXPV(IV)+YF*2.7183**(- 1.0" ((IV-YD*YV0)/(YE*YV0))**2.0)
XPV(IV)fXPV(IV)* (2.0*IV*YV0-IV**2.0)
XPV(IV)=XPV(IV)+YH*YC*(4.0*IV*YV0-IV**2.0)

IF(XPV(IV) .LE. O.O00)THEN
xPv(Iv) = o.o
IVMAX = IV
GOTO 586

END IF
XSUMIV = XSUMIV + XPV(IV)

.IV-IV+ 1
GOTO 584
586 DO 588 I=I,IVMAX
xPvfI) = xPv(D I XSUMIV
CONTINUE
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

RETURN
END

C ._ :

SUBROUTINE DEBRISOLD(T, XP0, AREAK, D)
FLUX = -1.0 * ALOG(XP0) / (AREAK * T)

F = ALOG 10ff'LUX)
C***** MS-FORTRAN DOES NOT ALLOW CONSECXJ'ITVE MATHEMATICAL

OPERATORS TO BE PLACED ADJACENT TO ONE ANOTHER, i.e.
YOU CAN *** NOT *** HAVE: "/- "

IF(F.GE.-5.46)THEN
D= 10.** ((1::+5.46)/-2.52)

END IF

IF(F.GE.-5.9.AND.F.LT.-5.46)THEN
D= 10.**((F+5.02)/-0.44)

END IF
IF(F.LT.-5.9.AND.F.GE.-6.4)THEN

D= 10.**((F+5.78)/-0.063) .......
END IF
IF(F.GE.-7.0.AND.F.LT.-6.4)THEN

D= 10.**((F+6.33)/-0.0067)
END IF
IF(F.GE.-?.3.AND.F.LT.-7.0)THEN

D=10.**(('F+6.88)/-0.0012)
END IF
IF(F.GE.-7.6.AND.F.LT.-7.3)THEN

D= 10.**((F+6.6)/-0.002)
END IF "
IF(F.GE.-8.0.AND.F.LT.'7.6)THEN

D= 10.**((F+5.6)/-0.004)
END IF

IF (F.GE. - 5.46) THEN
D=10.**((F+5.46)/(-2.52)) ....... _

_(F.GE._5.O_ND.F.LT.-5.46)THEN
D=I0.**((F+5.02)/(-0.44))
END IF

IF(F.LT.-5.9.AND.F.GE.-6.4)_N _
D--10.**((F+5.78)/(-0.063))

END IF
IF(F.GE.-7.0.AND.F.LT.-6.4)THEN

D- l O.**( (F+6.33 )/(-O.O067) )
END IF

IF(F.GE.-7.3.AND.F.LT.-7.0)THEN
D=10.**((F+6.88)/(--0.0012))

END IF
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C

C

C

IF(F.GE.-7.6.AND.F.LT.-7.3)THEN
D= 10.* *((F+6.6)/(.0.002))

END IF
IF(F.GE.-8.0.AND.F.LT.-7.6)THEN

D =10.* * ((F+5.6)/(-0.004))
END IF

RETURN
END
C
C SUBROUTINE METEOROID(SA,T2OALT,DENS,D)

SUBROUTINE METEOROID(AREAK, T, XP0, ALT, DENS, D, L)

I001

T = 31536000.0 * T
FLUX = -1.0 * ALOG(XP0) / (AREAK * T)
RA = 6371.0 / (6371.0 + ALT)
GE = .568 + .432 * RA
THETA = ATAN(6371.0 / SQRT(ALT * (ALT + 2.0 * 6371.0 )))
S = (1.0 + COS (THETA)) / 2.0
FLUX = FLUX / (GE * S)
F = ALOG 10(FLUX)

IF (F.GE. - 4.403) THEN
WRITE(11,*)' MASS IS TOO SMALL'

GOTO 1001
END IF

IF(F.GT.-7.103 .AND .F.LT.-4.403)THEN
RAD - 2.509 - .25 * (14.339 + L)
XM= 10.**((-1.584+SQRT(RAD))/. 125)

END IF
IF(F.LE.-7.103 .AND .F.GE.- 14.37 )THEN

XM=10.**((14.37+F)/-1.213) <-- NOT ALLOWED IN MS-FORTRAN
XM=10.**( (14.37+F)/(- 1.213) )

END IF
IF (F.LT. - 14.37) THEN

WRITE(11,*)' MASS IS TOO LARGE'
GOTO 1001

END IF
D=(1.91*XM/DENS)**.333

CONTINUE
RETURN

END
C-"

C SUBROUTINE NYSMITH(V,D,H,RHO 1,RHO2,T 1,T2,WT,WTCMC)
SUBROUTINE NYSMITH(V, D, H, RHO1, RHO2, T1, T2)

C DMAX=0.24*H*V**-0.2 <--- NOT ALLOWED IN MS-FORTRAN
DMAX=0.24*H*V**(-0.2)
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glD

IF (D.GT.DMAX) THEN
WRITE(11,*)' NO SOLUTION--PROL DIA. TOO LARGE FOR NYSMITH'

TI=(1.93*V**0.18"D** 1.9I/H**0.9 I)*(_O2/RHO I)**0.65)

T2 = 1.86 * TI * RHOI /RHO2

END IF
RETURN

END

C

*****

C

&

PEN4 *****
SUBROUTINE BOEING(V,D,RHOP,RHO 1,RHO2,S,XL2,SY 1,SY2,THETA,

XN,E1,CMCRAD,T1,T2,WT,WTCMC)

C***

SUBROU'IZNE BOEING(V,D,RHOP,RHO 1,RHO2,S,XL2,S Y 1,SY2,THETA,
XN,E1,CMCRAD,T1,T2,WT)

7

+
T1 = .16

V = V * 3280.0

D = D /30,48 ....

RP = D IZ0
RHOP = _OP * 1.94
RHO1 = RHO1 * 1.94
RHO2 = RHO2 * 1.94
NITSP = 0
NITSP = NITSP + I
NPI-0

TIP = TI / 30.48
T2P = FIRP(RI-IOP,V, RP, SYI,THETA, RHOI,SY2,D,RHO2,TIP)
WT = RHO1 * TIP + RHO2 * T2P " .-

IF (N1TSP.EQ. 1) THEN
TIP1 - 1.1 *TIP

T2PI - FIRP(RHOP,V,RP, S Y I,THETA,RHO 1,SY2,D,RHO2,TI V I)
_1 =RHO1 * TIP1 + RHO2 *T2PI

END IF

IF 0NT1.GT.WT) THEN
TIPI =.82*TIPI _ _ - _

T2PI ---_P(Ri_IOP'V,_'SYI,_TA,RHOI,SY2,D,RHO2,TIPI) :_

WTI = RHOI * TIPI + RHO2 * T2PI

590 IF (WTI.GT.WT) THEN
GOTO 601

ELSE

TIP = T!PI
T2P = T2PI

NPI = NPI + I

IF (NP 1.EQ. 100) THEN ......
WR1TE(ll,*)' NO CONVERGENCE IN PEN4'

GOTO 557
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C***

T1P1 - .9 * T1P1
T2P1 = FT2P(RI-IOP,V,RP, SY I ,THETA,RHO 1,SY2,D,RHO2,T1P 1)
WT1 - RHO1 * T1P1 + RHO2 * T2P1
GOTO 590

END IF
ELSE

579 TIP - T1P1
T2P = T2PI
WT-- WTI

TIPI = I.I* TIPI

T2P I = FT2P(RHOP,V,RP, SY 1,THETA, RHO 1,SY2,D ,P,I-IO2,T1P l)
WT1 = RHOI * TIPI + RHO2 * T2PI

IF (WTI.GT.WT) THEN

GOTO 601

ELSE
NPI = NPI + I

IF (NPI.EQ.100) THEN
WRITE(II,*)' NO CONVERGENCE IN PEN4'

GOTO 557
END IF

GOTO 579
END IF

END IF
601 CONTINUE

D = 30.48 * D

RHOP = RHOP / 1.94
RHO1 = RHO1 / 1.94
RHO2 = RHO2 / 1.94
TIP -- 30.48 * TIP
T2P = 30.48 * T2P

IF(T IP/D.LE.0.4)VF--4100
IF(TIP/D.GT.0.4)VF---4986*(T1P/D)**0.21
VF-- VF + 4000.0

IF (V.LE.VF) THEN
c*** WRITE(11,*)' INSIDE OF PEN4 LIMITS'

T1 -- TIP
'1"2 --T2P

GOTO 1102
END IF

557 CONTINUE

***** WILKINSON *****

V = V / 3280.0
TI=0.604*D**2.*RHOP/(S*RHO1)
T1 = T1 * SQRT(V * COS(THETA) / XL2)
T2 = T1 * RHO1 / RHO2
RATIO =D * RHOP/(T1 * RHO1)
IF (RATIO.GT.1.0) GOTO 1458
IF(RATI--O.LE.I.0)T_=T2/RATIO
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C
C
C
C

1458 CONTINUE

c*** WRITE(11,*)'TI_W_= ',TI,'T2W = ',T2 : _ i :
***** MODIFIED BUR_ ***

THI=0.816*(0.5236*RHOP*D**3.0)**0.352* (RHOP**0.167)
THI=THI*(V**0.875)/(0.8467*RHOl**0.5)
HI = THI/2.54
TLO- 0.0
TIN RVAL = Till-TLO
C

ISEED=91411 <--- THIS IS NO LONGER NEEDED, SINCE
WE WILL USE OUR OWN SEED VALUE
WHICH WILL COMPLY WITH MS-FORTRAN

VB = V * 3280.0
DB - D / 2.54
CM = SQRT(E1 /RHO1)
CM - CM / 30.48

RHOP = RHOP * .036215
RHO1 --RHO1 * .036215
RHO2 - RHO2 * .036215

IF (THETA.LE.0.001) GOTO 125
CHI -- TAN(THETA) - .5

XPENALTY -- 1.0
TiB =
Fl=2.42*(DB/T1B)**0.333+4.26*(T1B/DB)**0.333-4.18
F2 -- .5 - 1.87 * ('rib / DB) + (5.0 * T1B / DB - 1.6)

+ * CHI* Ca-II* CM
F2=F2+ (1.7- 12.0 *T1B/DB) *CHI
F3=0.32*(TIB/DB)**0.83

F3=F3+0.48*_IB/DB)**0.33*(SIN(THETA))**3_0 , _ , .:_i__-i::
c*** WR1TE(11,*)'DB = ',DB,'_ -- '_;'F1 --Yi,-F2 =-,F2
e*** WRITE(11,*)'THI = ',THI,'CHI = ',CHI

IF (F1 + .63 * F'2.LT.0.001) THEN
T2F= 2116.8 * CMCRAD / SY2
GOTO 483

END IF
T2F=DB*((Fl+0.63*F2)/XN)**l.7143

T2F=TZF _'(¢YMTVB_)*'_2,2857
T2F=T2F*(DB/SB)**0.7143

483 XNN=F3*(DB/T2F')*(CM/VB)**l.333 _: : _
YDELTA = 0.0

IF(XNN.GT.0.850)YDELTA= 1.000
TOTPEN=YDELTA*XPENALTY* (XNN-0.85)*'2.00

WTB = RHO 1 * T1B + RHO2 * T2F + TOTPEN
WTMIN =WTB

r_
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2---

C
C MS

T1BEST = THI
T2BEST = T2F
TOTPENBEST - TOTPEN

482 DO 481 IPENALTY=l,460
C

TIB=TINTERVAL*RAN(ISEED) <--- RAN IS NOT USED IN
- FORTRAN

484

C*****

CALL RANDOM(RANVAL)
TIB - TINTERVAL * RANVAL

F1--2.42*(DB/T 1B)**0.333+4.26*(TIB/DB)**0.333-4.18
F2 -- .5 - 1.87 * (T1B/DB) + (5.0 * T1B/DB - 1.6)

+ * CHI* CHI* CHI

F2 = F2 + (1.7 - 12.0 * T1B/DB) * CHI
F3=0.32*(T1B/DB)**0.83
F3=F3+0.48*(T 1B/DB)**0.33*(SIN(THETA))**3.0

IF (F1 + .63 * F2.LT.0.001) THEN
T2F - 2116.8 * CMCRAD / SY2

GOTO 484
END IF

T2F=DB*((F1+0.63*F2)/XN)**l.7143
T2F=T2F* (CM/VB)**2.2857
T2F=T2F*(DB/SB)**0.7143

XNN=F3* (DB/T2F)* (CM/VB)** 1.333
YDELTA = 0.0

IF(XNN.GT.0.850)YDELTA= 1.000
TOTPEN=YDELTA*XPENALTY*(XNN-0.85)**2.00

WTB = RHO1 * T1B + RHO2 * T2F + TOTPEN

IF (WTB.LT:WTMIN) THEN
WTMIN- WTB
TIBEST -- T1B
T2BEST -- T2F
TOTPENBEST = TOTPEN

END IF
481 CONTINUE

IF (TOTPENBEST.GT.0.001) THEN
XPENALTY - XPENALTY * 10.0

IF (XPENALTY.GT. 1.0E12) THEN
GOTO 485
END IF
GOTO 482

END IF
485 T1B-T1BEST

T2B ---T2BEST

c*** WRITE(I I,*)'TIB = ',TIB,'T2B = ',T'2B,'K = ',XPENALTY
WRITE(I I,*)'TOTPENBEST = ',TOTPENBEST

GOTO499
CONTINUE125
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c***** WRITE(ll,*)'RHO1 = ',RHO1
c***** WRITE(11,*)'RHO2 = ',RHO2

Q

J

XK 1=(DB/XN)** 1.71 * (CM/VB)**2.29/SB**0.71
VDELTA = 0.0

DELTA3 = .52
1099 DELTA2 = 2.33 * (1.0 - 1.57 * DELTA3)

DELTA1 = 1.33 * (2.0 * DELTA3- 1.0 )
V'DELTAI=(1./DELTA1)**DELTA !*(2.8*XK1/(DELTA2*DB**0.57))

+ **DELTA2
VDELTAl=VDELTAl*(1.58*XKl*DB**0.57/DELTA3)**DELTA3
VDELTA I=VDELTA1 *(RHO 1**DELTA1 )*(RHO2** (DELTA2+DELTA3))

IF (VDELTA 1.LT.VDELTA) THEN
DELTA1 = 1.33 * (2.0 * DELTA3 - 1.04)
T1B = DELTA1 * VDELTA / RHO1 ......................

T'2B = (VDELTA - T1B * RHO1) / RHO2
GOTO 499

END IF
VDELTA = VDELTA1

DELTA3 = DELTA3 + .02

IF (DELTA3.GT.0.63) THEN
T1B = DELTA1 * _ELTA / RHO1

T'2B = (VDELTA - T1B * RHO1) / RHO2
GOTO 499

END IF
GOTO 1099

499 CONTINUE
• **** COMPARISON OF MODIFIED BURCH AND WILKINSON *****
199 CON_

T10W = TI /2.54

IF (THETA.LT.0.001) GOTO 486
F 10W=2.42*(DB/'r 10W')**0.333+4.26*(TI 0W/DB)**0.333-4.18

F20W = .5- 1.87* (TIOW /DB) + (5.0 * TIOW/DB - 1.6)

+* CHI * CHI* CHI

F20W = F20W + (1.7 - 12.0 * T10W / DB) * CHI
F30Wffi0.32*(T 10W/DB)**0.83
F30WfF30W+0.48*(T10W/DB)**0.33*(SIN(THETA))**3.0

IF (F10W + .63 * F20W.LT.0.001) THEN
T2FTIOW = 2i 16.8 * CMCRAD / SY2

GOTO 487
END IF

TRFTI0W=DB*((FIOW+0.63*F20W)/XN)** 1.7143

T2FTIOW=T2FTIOW*(CM/VB)**2.2857
T2FT 10W=T2FTI 0W*(DB/SB)**0.7143

487 TRBTIOW = T2FTIOW * 2.54 ....

XNNT I 0W=F30W*_B/T2FT IOW)* (CM/VB)** 1.333
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IF (XNNT10W.GT.0.85) THEN
TRBT10W -- 0.0

END IF
RATIOB = (DB * RHOP) / (RHO1 * T1B)

T2WT10B =0.364*D**3.*RHOP*V*COS (THETA)/(XL2*RHO2* S**2.)

IF(RATIOB.GT. 1.0)TRWT 10B=T2WT 10B*RATIOB
IF(T2BT10W.GT.TR)T2=T2BT10W
T2B = T2B * 2.54

IF(T2WT10B.GT.T2B)T2B=T2WT10B
T1B = T1B * 2.54

RHOP = RHOP / .036215
RHO1 = RHO1 / .036215
RHO2 = RHO2 / .036215

IF (RHO1 * TIB + RHO2 * T2B.LT.RHO1 * T1 + RHO2 * T2) THEN
T1 = T1B
T2 =T2B

END IF
GOTO 155

486 F10W=1.58*(DB/T10W)**0.57+2.80*(T10W/DB)**0.57
T2BT10W=(F10W/XN)**1.71*(CM/VB)**2.29*DB**l.71
T2BT10W=T2BT10W/SB**0.71
T2BT10W = T2BT10W * 2.54

RATIOB = (DB * RHOP) / (RHO1 * TIB)
T2WT10B=0.364*D**3.*RHOP*V*COS(THETA)/(XL2*RHO2*S**2.)

IF(RATIOB.GT. 1.0)T2WT10B=T2WT10B*RATIOB
IF(T2BT10W.GT.T2)T2=T2BT10W
T2B = T2B * 2.54

IF(T2WT10B.GT.T2B)T2B=T2WT10B
T1B = T1B * 2.54

RHOP = RHOP / .036215
RHO1 = RHO1 / .036215
RHO2 = RHO2 / .036215

IF (RHO1 * TIB + RHO2 * T2B.LT.RHO1 * T1 + RHO2 * T2) THEN
T1 = T1B
T2 =T2B

END IF
155 CONTINUE

1102 IF (T2.LE.0.01) THEN
T2 - 2116.8 * CMCRAD / SY2

c***** WRITE(11,*)'T1P -- ',TI,'T2P = ',T2
END IF

c*** WRITE(11,*)'T1 -- ',TI,'T2 - ',T2
156 RETURN

END
C _wm_x_.wm

FUNCTION FT2B (DB, T1B, XN, CM, VB, SB)
F 1-2.42*(DB/T1B)**0.33+4.26*(T1B/DB)**0.33

F1 = F1 - 4.18

FF2B=(F1/XN)**l.71*(CM/VB)**2.29*DB**l.71/SB_
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C

RETURN

END : _

FUNCTION FT2P (RHOP,V,RP,SY 1,THETA,RHO 1,SY2,D,RHO2,T 1P)
A-1.33*RHOP*(V*RP)**2. :,:..... : . -;-: _ ......

B -" 8.0 * SY1 * EXP(-.0003125 * V) / COS(THETA)
C=l.33*RHOP*RP**2.0
D 1 = RP * RHO 1 / COS (THETA)
XKI=I.67*(RHOP/(2.*SY2))**0.31 _,:___: _ ._
XKI=XK1*(0.28 I*D*RHOP/RHO2)**0.33
XK1 = XKI * COS(THETA)
CIPI = (A - B * TIP) / (C + D1 * TIP)

IF (CIPI.LE.0.001) THEN
F'!RP = 0.0
GOTO 999

END IF
FT2P=XKI*CIPI**0.31

999 RETURN
END

C SUBROUTINE MADDEN(V,D,RHOP,S,RHO,T1,T2,WT,WTCMC)
SUBROUTINE MADDEN(V, D, RHOP, S, RHO, T1, T2)

V = V* 100000.0

Tl=0.009*SQRT(V)*RHOP*D**2.0
TI=T1/(S*RHO** 1.5)
TR=T1

RETURN
END

C
C

&

&

TI =0._*D**2,*_OP/(S*RHO I)

TI = TI * SQRT(V / XL2)
T2 = TI * RHOI / RHO2
RATIO =D * RI-IOP/(TI * RHOI)

IF (P,ATIO.GT.I.0) GOTO 3683
IF(RATIO.LE. 1.O)T2:T2/RATIO

3683 CONTINUE
RETURN

END

• **** MODIFIED BURCH *****

=

SUBROUTINE WK,KINSON(V,D,RHOP, RHO I,RHO2,S,XL2,
TI,T2,WT,WTCMC)

SUBROUTINE WILKINSON(V,D,RHOP,RHO I,RHO2,S,XL2,
TI,T2)

,@
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z •

=

C
C

&
SUBROUTINE BURCH(V,D,RHO1,RI-IO2,S,THETA,

XN,E 1,T1,T2,WT,WTCMC)

&
SUBROUTINE BURCH(V,D,RHO 1,RHO2,S,THETA,

XN,E1,T1,T2,T1B,F1)

VB -- V * 3280.0

DB = D / 2.54

CM -- SQRT(E1 / RHO1)
CM - CM / 30.48
SB = S / 2.54

IF (THETA.LE.0.001) GOTO 425
CHI = TAN(THETA) - .5

F2=0.5-1.87"(T 1B/D)+(5.*T 1B/D- 1.6)*CHI** 3.0
F2=F2 + (1.7- 12.0 * T1B/D)* CHI

F3=0.32*(T 1B/D)**0.83
F3=F3+0.48*(T1B/D)**0.33*(SIN(THETA))**3.0

T2F=D*((Fl+0.63*F2)/XN)*(CM/V)**2.29
T2F=T2F* (D/S)*'0.71
T2N=F3 * (CM/V)** 1.33*D/XN

IF(T2N.GE.T2F)T2B=T2N
IF(T2N.LT.T2F)T2B =T2F
T2B - T2B * 2.54

IF(T2B.GT.T2)NREGION=3
IF(T2B.GT.T2)T2=T2B
GOTO 499

425 CONTINUE
NITSB = 0

XK 1=(DB/XN)** 1.7 l*(CM/VB)**2.29/SB**0.71
V'DELTA = 0.0
DELTA3 = .52

1099 DELTA2=2.33*(1.- 1.57*DELTA3)
DELTA1 = 1.33 * (2.0 * DELTA3 - 1.0 )
V DELTA 1 =(1 ./DELTA 1)**DELTA l*(2.8*XK 1/(DELTA2*DB**0.57))

+ **DELTA2

VDELTAl=VDELTAl*(1.58*XKl*DB**0.57/DELTA3)**DELTA3
VDELTAI=VDELTA I*(RHOI**DELTA 1)*(RHO2**(DELTA2+DELTA3))

IF (VDELTA 1.LT.VDELTA) THEN
DELTA1 = 1.33 * (2.0 * DELTA3 - 1.04)
T1 -- DELTA1 * VDELTA / RHO1

1"2 = (VDELTA - T 1 * RHO 1) / RHO2
GOTO 499

END IF
VDELTA = VDELTA1

DELTA3 = DELTA3 + .02

r®
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IF 0:)ELTA3.GT.0.63) THEN
T1 = DELTA1 * VDELTA / RHO1

"1"2= (VDELTA - T1 * RHO1) / RHO2
GOTO 499

END IF
GOTO 1099

499 CONTINUE
T1 -T1 * 2.54

T'2 -- T'2 * 2.54
RETURN

END
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